Advertisement

Plant and Soil

, Volume 271, Issue 1–2, pp 1–13 | Cite as

Effects of transgenic plants on soil microorganisms

  • Biao Liu
  • Qing Zeng
  • Fengming Yan
  • Haigen Xu
  • Chongren Xu
Article

Abstract

The rapid development of agricultural biotechnology and release of new transgenic plants for agriculture has provided many economic benefits, but has also raised concern over the potential impact of transgenic plants on the environment. Considerable research has now been conducted on the effects of transgenic plants on soil microorganisms. These effects include unintentional changes in the chemical compositions of root exudates, and the direct effects of transgenic proteins on nontarget species of soil microorganisms. Most studies to date suggest that transgenic plants that have been released cause minor changes in microbial community structures that are often transient in duration. However, due to our limited knowledge of the linkage between microbial community structure and function, more work needs to be done on a case-by-case basis to further evaluate the effects of transgenic plants on soil microorganisms and soil ecosystem functions. This review summarizes the results of a variety of experiments that have been conducted to specifically test the effects of transgenic plants on soil microorganisms, and particularly examines the types of methods that are being used to study microbial interactions with transgenic plants.

Keywords

GMO microorganisms rhizosphere ecology root exudates soil transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrenholtz, I, Harms, K, Vries, J, Wackernagel, W. 2000Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoesAppl. Environ. Microbiol6618621865CrossRefPubMedGoogle Scholar
  2. Amann, RI, Ludwig, W, Schleifer, KH. 1995Phylogenetic identification and in situ detection of individual microbial cells without cultivationMicrobiol. Rev59143169PubMedGoogle Scholar
  3. Austin, S, Bingham, ET, Matthews, DE, Shahan, MN, Will, J, Burgess, RR. 1995Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alphaamylase and manganese-dependent lignin peroxidaseEuphytica85381393CrossRefGoogle Scholar
  4. Bruinsma, M, Kowalchuk, GA, Veen, JA. 2003Effects of genetically modified plants on microbial communities and processes in soilBiol. Fertil. Soils37329337Google Scholar
  5. Buckley, DH, Schmidt, TM. 2003Diversity and dynamics of microbial communities in soils from agro-ecosystemsEnviron. Microbiol5441452CrossRefPubMedGoogle Scholar
  6. Cannon, RJC. 2000Bt transgenic crops: Risks and benefitsIntegr. Pest. Manage. Rev5151173CrossRefGoogle Scholar
  7. Cowgill, SE, Bardgett, RD, Kiezebrink, DT. 2002The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphereJ. Appl. Ecol39915923CrossRefGoogle Scholar
  8. Curtis, IS, Nam, HG, Yun, JY, Seo, KH. 2002Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and floweringTransgenic Res11249256CrossRefPubMedGoogle Scholar
  9. Vries, J, Harms, K, Broer, I, Kriete, G, Mahn, A, Düring, K, Wackernagel, W. 1999The bacteriolytic activity in transgenic potatoes expressing a chimeric T4 lysozyme gene and the effect of T4 lysozyme on soil- and phytopathogenic bacteriaSyst. Appl. Microbiol22280286Google Scholar
  10. Donegan, KK, Palm, CJ, Fieland, VJ, Porteous, LA, Ganio, LM, Schaller, DL, Bucao, LQ, Seidler, RJ. 1995Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxinAppl. Soil. Ecol2111124CrossRefGoogle Scholar
  11. Donegan, KK, Seidler, RJ, Doyle, JD, Porteous, LA, Digiovanni, G, Widmer, F, Watrud, LS. 1999A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: Effects on the soil ecosystemJ. Appl Ecol36920936CrossRefGoogle Scholar
  12. Donegan, KK, Seidler, RJ, Fieland, VJ, Schaller, DL, Palm, CJ, Ganio, LM, Cardwell, DM, Steinberger, Y. 1997Decomposition of genetically engineered tobacco under field conditions: Persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populationsJ. Appl Ecol34767777Google Scholar
  13. Drijber, RA, Doran, JW, Parkhurst, AM, Lyon, DJ. 2000Changes in soil microbial community structure with tillage under long-term wheat-fallow managementSoil Biol. Biochem3214191450CrossRefGoogle Scholar
  14. Dunfield, KE, Germida, JJ. 2001Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napusFEMS. Microbiol. Ecol3819CrossRefGoogle Scholar
  15. Dunfield, KE, Germida, JJ. 2003Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus)Appl. Envir. Microbiol6973107318CrossRefGoogle Scholar
  16. Dunwell, JM. 2002Future prospects for transgenic cropsPhytochem. Rev1112CrossRefGoogle Scholar
  17. During, K, Porsch, P, Fladung, M, Lorz, H. 1993Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovoraPlant J3587598Google Scholar
  18. Escher, N, Kach, B, Nentwig, W. 2000Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcello scaber (Crustacea: Isopoda)Bas. Appl. Ecol1161169Google Scholar
  19. Giovanni, GD, Watrud, LS, Seidler, RJ, Widmer, F. 1999Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using biolog GN metabolic fingerprinting and enterobacterial repetitiveintergenic consensus sequence-PCR (ERIC- PCR)Microb. Ecol37129139PubMedGoogle Scholar
  20. Glandorf, DCM, Bakker, PAHM, Loon, LC. 1997Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microfloraActa Bot. Neerl4685104Google Scholar
  21. Griffiths, BS, Geoghegan, IE, Robertson, WM. 2000Testing genetically engineered potato, producing the lections GNA and ConA, on non-traget soil organisms and processesJ. Appl. Ecol37159170Google Scholar
  22. Gyamfi, S, Pfeifer, U, Stierschneider, M, Sessitsch, A. 2002Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphereFEMS Microbiol. Ecol41181190Google Scholar
  23. Haack, SK, Garchow, H, Klug, MJ, Forney, LJ. 1995Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patternsAppl. Environ. Microbiol6114581468Google Scholar
  24. Heuer, H, Kroppenstedt, RM, Lottmann, J, Berg, G, Smalla, K. 2002Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factorsAppl. Environ. Microbiol6813251335PubMedGoogle Scholar
  25. Huang, JK, Hu, RF, Pray, C, Qiao, FB, Rozelle, S. 2003Biotechnology as an alternative to chemical pesticides: A case study of Bt cotton in ChinaAgr. Econ295567Google Scholar
  26. James, C. 2003Preview: global status of commercialized transgenic crops: 2003ISAAA Briefs No. 30. ISAAAIthaca, NYGoogle Scholar
  27. Jepson, PC, Croft, BA, Pratt, GE. 1994Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plantsMol. Ecol38189Google Scholar
  28. Kawahigashi, H, Hirose, S, Ohkawa, H, Ohkawa, Y. 2003Transgenic rice plants expressing human CYP1A1 exude herbicide metabolites from their rootsPlant Sci165373381Google Scholar
  29. Koskella, J, Stotzky, G. 2002Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitroCan. J. Microbiol48262267PubMedGoogle Scholar
  30. Kozdroj, J, Elsas, JD. 2001Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profilingAppl. Soil Ecol173142Google Scholar
  31. Lipson, DA, Schmidt, SK. 2004Seasonal changes in an alpine soil bacterial community in the colorado rocky mountainsAppl. Environ. Microbiol7028672879PubMedGoogle Scholar
  32. Lottmann, J, Berg, G. 2001Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plantsMicrobiol. Res1567582PubMedGoogle Scholar
  33. Lottmann, J, Heuer, H, Smalla, K, Berg, G. 1999Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteriaFEMS Microbiol. Ecol29365377Google Scholar
  34. Lu, RK. 1999The Analytical Method of Agricultural Soil ChemistryAgricultural Science and Technology Press of ChinaBeijing228264Google Scholar
  35. Maizel, A, Weigel, D. 2004Temporally and spatially controlled induction of gene expression in Arabidopsis thalianaPlant J3816471PubMedGoogle Scholar
  36. Medina, MJH, Gagnon, H, Piche, Y, Ocampo, JA, Garrido, JMG, Vierheilig, H. 2003Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plantPlant Sci164993998Google Scholar
  37. Metraux, JP, Signer, H, Ryals, J, Ward, E, Wyss-Benz, M, Gaudin, J, Raschdorf, K, Schmid, E, Blum, W, Inverardi, B. 1990Increase in salicylic acid at the onset of systemic acquired resistance in cucumberScience25010041006Google Scholar
  38. Nap, JP, Metz, PLJ, Escaler, M, Conner, AJ. 2003The release of genetically modified crops into the environment, Part I: Overview of current status and regulationsPlant. J33118PubMedGoogle Scholar
  39. Nordeen, RO, Sinden, SL, Jaynes, JM, Owens, LD. 1992Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogensPlant Sci82101107Google Scholar
  40. Odell, JT, Nagy, F, Chua, NH. 1985Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoterNature313810812PubMedGoogle Scholar
  41. Oger, P, Annik, P, Yves, D. 1997Genetically engineered plants producing opines alter their biological environmentNat. Biotechnol15369372PubMedGoogle Scholar
  42. Oger, P, Mansouri, H, Dessaux, Y. 2000Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opinesMol. Ecol9881890PubMedGoogle Scholar
  43. Ogram, A. 2000Soil molecular microbial ecology at age. (20: methodological challenges for the futureSoil Biol. Biochem.,3214991504Google Scholar
  44. Punja Z, K. 2001Genetic engineering of plants to enhance resistance to fungal pathogens – A review of progress and future prospectsCan. J. Plant Pathol23216235Google Scholar
  45. Salmeron, JM, Vernooij, B. 1998Transgenic approaches to microbial disease resistance in crop plantsCurr. Opin. Plant Biol1347352PubMedGoogle Scholar
  46. Saxena D, Flores S, Stotzky G. (1999). Transgenic plants: Insecticidal toxin in root exudates from Bt corn. Nature 402, 480.Google Scholar
  47. Saxena, D, Flores, S, Stotzky, G. 2002Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation eventsSoil Biol. Biochem34133137Google Scholar
  48. Saxena, D, Stotzky, G. 2000Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situFEMS Microbiol. Ecol333539PubMedGoogle Scholar
  49. Saxena, D, Stotzky, G. 2001Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soilSoil Biol. Biochem3312251230Google Scholar
  50. Schmalenberger, A, Tebbe, CC. 2002Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar BosphoreFEMS Microbiol. Ecol402937Google Scholar
  51. Schmalenberger, A, Tebbe, CC. 2003Genetic profiling of noncultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistanceCan. J. Microbiol4918PubMedGoogle Scholar
  52. Schnepf, HE. 1995Bacillus thuringiensis toxins: Regulation, activities and structural diversityCurr. Opin. Biotech6305312Google Scholar
  53. Sessitsch, A, Kan, FY, Pfeifer, U. 2003Diversity and community structure of culturable Bacillus spp. populations in the rhizospheres of transgenic potatoes expressing the lytic peptide cecropin BAppl. Soil. Ecol22149158Google Scholar
  54. Sela-Buurlage, MB, Ponstein, AS, Bres-Vloemans, SA, Melchers, LS, Elzen, PJM, Cornelissen, BJC. 1993Only specific tobacco (Nicotiana tabacum) chitinases and b-1,3-glucanases exhibit antifungal activityPlant Physiol101857863PubMedGoogle Scholar
  55. Siciliano, SD, Germida, JJ. 1999Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cvQuest, compared to the non-transgenic B. napus cv Excel and B. rapa cv. Parkland. FEMS. Microbiol. Ecol29263272Google Scholar
  56. Siciliano, SD, Theoret, CM, Freitas, JR, Hucl, PJ, Germida, JJ. 1998Differences in the microbial communities associated with the roots of different cultivars of canola and wheatCan. J. Microbiol44844851Google Scholar
  57. Sims, SR, Ream, JE. 1997Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studiesJ. Agr. Food Chem.,4515021505Google Scholar
  58. Stelly, DM, Altman, DW, Kohel, R, Rangan, TS, Commiskey, E. 1989Cytogenetic abnormalities of cotton somaclones from callus culturesGenome32762770Google Scholar
  59. Susuki, MT, Giovannoni, SJ. 1996Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCRAppl Environ. Microbiol62625630PubMedGoogle Scholar
  60. Tesfayea, M, Dufault, NS, Dornbusch, MR, Allan, DL, Vance, CP, Samac, DA. 2003Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availabilitySoil Biol. Biochem3511031113Google Scholar
  61. Tesfaye, M, Temple, SJ, Allan, DL, Vance, CP, Samac, DA. 2001Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminumPlant Physiol12718361844PubMedGoogle Scholar
  62. Vierheilig, H, Alt, M, Lange, J, Gut-Rella, M, Wiemken, A, Boller, T. 1995Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular- arbuscular mycorrhizal fungus Glomus mosseaeAppl. Environ. Microbiol6130313034Google Scholar
  63. Vierheilig, H, Alt, M, Neuhaus, JM, Boller, T, Wiemken, A. 1993Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseaeMol. Plant-Microbe Interact6261264Google Scholar
  64. Ward, DM, Weller, R, Bateson, MM. 199016S rRNA sequences reveal numerous uncultured microorganisms in a natural communityNature3456365PubMedGoogle Scholar
  65. Wilkinson, JE, Twell, D, Lindsey, K. 1997Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plantsJ. Exp. Bot48265275Google Scholar
  66. Wolfenbarger, LL, Phifer, PR. 2000The ecological risks and benefits of genetically engineered plantsScience29020882093PubMedGoogle Scholar
  67. Wohlleben, W, Alijah, R, Dorendorf, J, Hillemann, D, Nussbaumer, B, Pelzer, S. 1992Identification and characterization of phosphinothricin-tripeptide biosynthetic genes in Streptomyces viridochromogenesGene115127132PubMedGoogle Scholar
  68. Wu, WX, Ye, QF, Min, H, Duan, XJ, Jin, WM. 2004Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soilSoil Biol. Biochem36289295Google Scholar
  69. Yang, YF, Yuan, HX, Liu, YL, Xu, XP, Li, BJ. 2002Research on root microorganism community of“RCH”transgenic riceChin. J. Eco-Agr102931(in Chinese).Google Scholar
  70. Zhang, Y, Shewry, PR, Jones, H, Barcelo, P, Lazzeri, PA, Halford, NG. 2001Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barleyPlant J28431441PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Biao Liu
    • 1
    • 2
  • Qing Zeng
    • 3
  • Fengming Yan
    • 1
  • Haigen Xu
    • 2
  • Chongren Xu
    • 1
  1. 1.Department of Environmental Biology and Ecology, College of Life SciencesPeking UniversityBeijingChina
  2. 2.Division of Biodiversity ConservationNanjing Institute of Environmental Sciences, State Environmental Protection Administration of ChinaNanjingChina
  3. 3.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina

Personalised recommendations