Plant and Soil

, Volume 270, Issue 1, pp 249–255 | Cite as

Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland

  • Kathleen K. Treseder
  • Michael F. Allen
  • Roger W. Ruess
  • Kurt S. Pregitzer
  • Ronald L. Hendrick
Article

Abstract

The lifespan of individual microbes in the soil influences nutrient cycling rates as well as population dynamics, but their responses to global change factors such as anthropogenic nitrogen deposition have been challenging to quantify in situ. We used minirhizotron images to track the abundance and turnover rate of individual fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland in New Mexico. We hypothesized that increases in nitrogen availability would alter rhizomorph lifespan and abundance. Sequential images were collected over eight sampling dates from November 1997 to August 1999, and a total of 278 rhizomorphs were examined. We found that neither standing stocks nor lifespans of rhizomorphs differed significantly between treatments. Lifespans of rhizomorphs lasted eleven months on average, indicating that nutrient immobilization in these structures could last for longer than a growing season in these sites.

Keywords

Basidiomycota Juniperus monosperma minirhizotron nitrogen Pinus edulis survival 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J D, Melillo, J M 1982Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin contentCan. J. Bot.6022632269Google Scholar
  2. Agerer, R 1988Studies on ectomycorrhizae. 17. The ontogeny of the ectomycorrhizal rhizomorphs of Paxillus involutus and Thelephora terrestris (Basidiomycetes)Nova Hedwigia47311334Google Scholar
  3. Binkley, D, Hart, S C 1989The components of nitrogen availability assessments in forest soilsAdv. Soil Sci.1057112Google Scholar
  4. Binkley, D, Vitousek, P M 1989

    Soil nutrient availability

    Pearcy, R WEhleringer, J RMooney, H ARundel, P eds. Physiological plant ecology: Field methods and instrumentationChapman and HallLondon7596
    Google Scholar
  5. Boddy, L 1999Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environmentsMycologia911332Google Scholar
  6. Boddy, L 1993Saprotrophic cord-forming fungi: Warfare strategies and other ecological aspectsMycol. Res.97641655Google Scholar
  7. Boddy, L, Watkinson, S C 1995Wood decomposition, higher fungi, and their role in nutrient redistributionCan. J. Bot.73S1377S1383Google Scholar
  8. Cairney, J W G 1991Rhizomorphs: Organs of exploration or exploitationMycologist5510Google Scholar
  9. Cairney, J W G, Meharg, A A 1999Influences of anthropogenic pollution on mycorrhizal fungal communitiesEnviron. Pollut.106169182CrossRefPubMedGoogle Scholar
  10. Crocker, T L, Hendrick, R L, Ruess, R W, Pregitzer, K S, Burton, A J, Allen, M F, Shan, J P, Morris, L A 2003Substituting root numbers for length: Improving the use of minirhizotrons to study fine root dynamicsAppl. Soil Ecol.23127135CrossRefGoogle Scholar
  11. Davidson, E A, Hart, S C, Shanks, C A, Firestone, M K 1991Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil coresJ. Soil Sci.42335349Google Scholar
  12. Duddridge, J A, Malibari, A, Read, D J 1980Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transportNature287834836Google Scholar
  13. Fog, K 1988The effect of added nitrogen on the rate of decomposition of organic matterBiol. Rev. Cambridge Philosophic. Soc.63433462Google Scholar
  14. Hendrick, R L, Pregitzer, K S 1996Applications of minirhizotrons to understand root function in forests and other natural ecosystemsPlant Soil185293304Google Scholar
  15. Hofmann, H P 1989The ultrastructure of natural beech ectomycorrhizae and rhizomorphs of the Basidiomycete Xerocomus chrysenteron (Bull ; St-Amans) QuelNova Hedwigia48455468Google Scholar
  16. Jansen, A E, Dighton, J 1990Effects on air pollutants on ectomycorrhizaA review. Air Pollut. Res. Rep.30158Google Scholar
  17. Keyser, P, Kirk, T K, Zeikus, J G 1978Ligninolytic enzyme system of Phanerochaete chrysosporium: Synthesized in the absence of lignin in response to nitrogen starvationJ. Bacteriol.135790797PubMedGoogle Scholar
  18. Luo, Y 2003Uncertainties in interpretation of isotope signals for estimation of fine root longevity: Theoretical considerationsGlob. Change Biol.911181119Google Scholar
  19. Majdi, H, Damm, E, Nylund, J E 2001Longevity of mycorrhizal roots depends on branching order and nutrient availabilityNew Phytologist150195202Google Scholar
  20. Majdi, H, Nylund, J-E 1996Does liquid fertilization affect fine root dynamics and lifespan of mycorrhizal short roots?Plant Soil185305309Google Scholar
  21. Mangenot, F, Reymond, J 1963Populations microbiennes de bois. V. Influence de quelques sources de carbone et d’azote sur la decomposition d’une sciureRevue Generale de Botanique70107129Google Scholar
  22. Pregitzer, K S, DeForest, J L, Burton, A J, Allen, M F, Ruess, R W, Hendrick, R L 2002Fine root architecture of nine North American treesEcol. Monogr.72293309Google Scholar
  23. Puri, G, Ashman, M R 1999Microbial immobilization of 15N-labelled ammonium and nitrate in a temperate woodland soilSoil Biol. Biochem.31929931Google Scholar
  24. Reid, I D 1979The influence of nutrient balance on lignin degradation by the white-rot fungus Phanerochaete chrysoporiumCan. J. Bot.5720502058Google Scholar
  25. Ruess, R W, Hendrick, R L, Bryant, J P 1998Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forestsEcology7927062720Google Scholar
  26. Rygiewicz, P T, Johnson, M G, Ganio, L M, Tingey, D T, Storm, M J 1997Lifetime and temporal occurrence of ectomycorrhizae on Ponderosa pine (Pinus ponderosa Laws) seedlings grown under varied atmospheric CO2 and nitrogen levelsPlant Soil189275287Google Scholar
  27. Schlesinger, W H 1997Biogeochemistry: An analysis of global changeAcademic PressSan Diego443Google Scholar
  28. Schmidt, I K, Jonasson, S, Michelsen, A 1999Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendmentAppl. Soil Ecol.11147160Google Scholar
  29. Shen, S M, Pruden, G, Jenkinson, D S 1984Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogenSoil Biol. Biochem.16437444Google Scholar
  30. SPSS 2000 Systat 10: ChicagoGoogle Scholar
  31. Staddon, P L, Ramsey, C B, Ostle, N, Ineson, P, Fitter, A H 2003Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14CScience30011381140PubMedGoogle Scholar
  32. Treseder K K 2004 A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: in pressGoogle Scholar
  33. Treseder, K K, Allen, M F 2000Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen depositionNew Phytologist147189200Google Scholar
  34. Treseder, K K, Masiello, C A, Lansing, J L, Allen, M F 2004Species-specific measurements of ectomycorrhizal turnover under N-fertilization: Combining isotopic and genetic approachesOecologia138419425PubMedGoogle Scholar
  35. Wallander, H, Goransson, H, Rosengren, U 2004Production, standing biomass and natural abundance of N-15 and C-13 in ectomycorrhizal mycelia collected at different soil depths in two forest typesOecologia1398997PubMedGoogle Scholar
  36. Wallander H, Persson H, Ahlstrom K 1991 Effects of nitrogen fertilization on fungal biomass in ectomycorrhizal roots and surrounding soil. In: Above- and Belowground Interactions in Forest Trees. Ed. H Persson. pp. 99–102Google Scholar
  37. Zogg, G P, Zak, D R, Pregitzer, K S, Burton, A J 2000Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forestEcology8118581866Google Scholar
  38. Zou, X M, Binkley, D, Doxtader, K G 1992A new method for estimating gross phosphorus mineralization and immobilization rates in soilsPlant Soil147243250Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kathleen K. Treseder
    • 1
  • Michael F. Allen
    • 2
  • Roger W. Ruess
    • 3
  • Kurt S. Pregitzer
    • 4
  • Ronald L. Hendrick
    • 5
  1. 1.Department of Ecology and Evolutionary Biology and Department of Earth System ScienceUniversity of California IrvineIrvineU.S.A
  2. 2.Center for Conservation BiologyUniversity of California RiversideRiversideU.S.A
  3. 3.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksU.S.A
  4. 4.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughton
  5. 5.School of Forest ResourcesUniversity of GeorgiaAthensU.S.A

Personalised recommendations