Advertisement

Plant and Soil

, Volume 270, Issue 1, pp 223–232 | Cite as

Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere

  • N. Tejera
  • C. Lluch
  • M. V. Martìnez-Toledo
  • J. Gonzàlez-López
Article

Abstract

Bacteria with the ability to grow on nitrogen-free media and with nitrogenase activity under aerobic or microaerobic conditions were isolated from sugarcane roots collected from four different agricultural locations in Granada (Spain). Isolates were Gram negative rods and were identified as Azotobacter chroococcum and Azospirillum brasilense. Our results suggest that Azotobacter isolates do not have a particular affinity for sugarcane rhizospheres and that, on the contrary, Azospirillum isolates show specific association and perhaps endophytic colonization of sugarcane. However, obligate endophytes (Gluconacetobacter diazotrophicus) were not found in the apoplastic fluid of the stems and macerates extracts of sugarcane tissues with the procedure applied. Population of this microorganism might be in low number in the Spanish sugarcane varieties studied which is also discussed.

Keywords

Azospirillum Azotobacter nitrogen fixation sugarcane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, F J 1967Handbook of Bacteriological Technique. 2nd, ed.,ButterworthLondon42Google Scholar
  2. Baldani, J I, Caruso, L, Baldani, V L D, Goi, S R, Dòbereiner, J 1997Recent advances in BNF with non-legume plantsSoil Biol. Biochem.29911922CrossRefGoogle Scholar
  3. Becking, J H 1992The family AzobacteraceaeBalows, ATrüper, G HDworkin, MHander, WSchleifer, K H eds. The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Vol. 4SpringerBerlin Heidelberg, New York31443170Google Scholar
  4. Bellone C H, Bellone S C, Pedrasa S C 1996 Hydraulic deficiency and acethylene reduction in sugar cane roots. In: 7th Int. Symp. Nitrogen Fixation with Non-Legumes, 16 – 21 October. Eds. K A Malik, M S Mirza, A M Khalid. Faisalabad, Pakistan, pp. 125–126Google Scholar
  5. Bergey’s Manual of Determinative Bacteriology 9th 1994 Eds. PHA Sneath, JT Staley, ST Williams. Williams and Wilkins, Baltimore, USAGoogle Scholar
  6. Bergey’s Manual of Systematic Bacteriology 1984 Eds. ST Williams, ME Sharpe, JG Holt. Williams and Wilkins, Baltimore, USAGoogle Scholar
  7. Boddey, R M, Oliveira, O C, Urquiaga, S, Reis, V M, Olivares, F L, Baldani, V L D, Dòbereiner, J 1995Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvementPlant Soil174195209CrossRefGoogle Scholar
  8. Boddey, R M, Urquiaga, S, Reis, V, Dòbereiner, J 1991Biological nitrogen fixation associated with sugarcanePlant Soil137111117Google Scholar
  9. Caballero-Mellado, J, Fuentes-Ramirez, L E, Reis, V M, Martìnez Romero, E 1995Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant groupAppl. Environ. Microbiol.6130083013Google Scholar
  10. Cavalcante, V A, Dòbereiner, J 1988A new acid-tolerant bacterium associated with sugarcanePlant Soil1082331Google Scholar
  11. Bruijn, F J 1992Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteriaAppl. Environ. Microbiol.5821802187PubMedGoogle Scholar
  12. Dòbereiner, J, Pedrosa, F O 1987Nitrogen-fixing Bacteria in Non Leguminous Crop PlantsScience Tech. Publishers. Springer Verlag Inc.Berlin, GermanyGoogle Scholar
  13. Dòbereiner, J, Urquiaga, S, Boddey, R M 1995Alternatives for nitrogen nutrition of crops on tropical agricultureFertil. Res.42339346CrossRefGoogle Scholar
  14. Dong, Z, Canny, M J, McCully, M, Reboredo, M R, Fernàndez, C, Ortega, E, Rodés, R 1994A nitrogen-fixing endophyte of sugarcane stems: A new role for the apoplastPlant Physiol.10511391147PubMedGoogle Scholar
  15. dosReis Junior, FB, Reis, V M, Urquiaga, S, Dòbereiner, J 2000Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.)Plant Soil219153159CrossRefGoogle Scholar
  16. Fuentes-Ramìrez, L E, Caballero-Mellado, J, Sepúlveda, J, Martìnez-Romero, E 1999Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilizationFEMS Microbiol. Ecol.29117128Google Scholar
  17. Fuentes-Ramìrez, L E, Jiménez-Salgado, T, Abarca-Ocampo, I R, Caballero-Mellado, J 1993Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of MexicoPlant Soil154145150CrossRefGoogle Scholar
  18. Gómez, F, Salmeron, V, Rodelas, B, Martìnez-Toledo, M V, Gonzàlez-López, J 1998Response of Azospirillum brasilense to the pesticides bromopropylate and methidation on chemically defined media and dialysed-soil mediaEcotoxicology74347Google Scholar
  19. Gonzàlez-López, J 1992Microorganismos diazotrofos asociados a raìces de plantas no leguminosasGonzàlez-López, JLluch, C eds. Interacción Planta-Microorganismo: Biologìa del NitrógenoRuedaMadrid Spain7196Google Scholar
  20. Grifoni, A, Bazzicalupo, M, Di Serio, C, Farcelli, S, Fani, R 1995Identification of Azospirillum strains by restriction fragment length polymorphism of 16S rDNA and the histidine operonFEMS Microbiol. Lett.1278591PubMedGoogle Scholar
  21. Haahtela, K, Wartiovaara, T, Sundman, V, Skujins, J 1981Root associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosoilsAppl. Environ. Microbiol.41203206Google Scholar
  22. Han, S O, New, P B 1998Variation in nitrogen fixing ability among natural isolates of AzospirillumMicrob. Ecol.36193201PubMedGoogle Scholar
  23. Hayward, A 1964Characteristics of Pseudomonas solanaceaerumJ. Appl. Bacteriol.27265277Google Scholar
  24. Herrera-Cervera, J, Caballero-Mellado, J, Laguerre, G, Tichy, H, Requena, N, Amarger, N, Martìnez-Romero, E, Olivares, J, Sanjuan, J 1999At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soilFEMS Microbiol. Ecol.308797Google Scholar
  25. Kirchhof, G, Baldani, J I, Reis, V M, Hartmann, A 1998Molecular assay to identify Acetobacter diazotrophicus and detect its occurrence in plant tissuesCan. J. Microbiol.441219Google Scholar
  26. Kirchhof, G, Reis, V M, Baldani, J I, Eckert, B, Dòbereiner, J, Hartmann, A 1997Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in graminaceous energy plantsPlant Soil1944555Google Scholar
  27. Krieg, N R, Holt, J G 1984Bergey’s Manual of Systematic Bacteriology Vol 1Williams & WilkinsBaltimore-London94Google Scholar
  28. Laguerre, G, Allard, M R, Revoy, F, Amarguer, N 1994Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genesAppl. Environ. Microbiol.605663Google Scholar
  29. Li, R-P, McRae, I C 1991Specific association of diazotrophic acetobacters with sugarcaneSoil Biol. Biochem.23999102Google Scholar
  30. Linblad, P, Guerrero, M G 1993Nitrogen fixation and nitrate reductionHall, D OScurlock, J M OBolhar-Nordenkampf, H RLeegood, R CLong, S P eds. Photosynthesis and Production in a Changing Environment. A Field and Laboratory ManualChapman and HallLondon444464Google Scholar
  31. Martìnez-Toledo, M V, Gonzàlez-López, J, Rubia, T, Ramos-Cormenzana, A 1985Isolation and characterization of Azotobacter chroococcum from the roots of Zea maysFEMS Microbiol. Ecol.31197203Google Scholar
  32. Muñoz-Rojas, J, Caballero-Mellado, J 2003Population dynamics Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growthMicrobial Ecol.46454464Google Scholar
  33. Muthukumarasamy, R, Revathi, G, Lakshminarasimhan, C 1999Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. From Indian sugarcane varietiesBiol. Fert. Soils29157164Google Scholar
  34. Muthukumarasamy, R, Revathi, G, Loganathan, P 2002Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus)Plant Soil24391102Google Scholar
  35. Oak, A 1992A re-evaluation of nitrogen assimilation in rootsBioSci.42103111Google Scholar
  36. Olivares, F L, Baldani, V L D, Reis, V M, Baldani, J I, Dòbereiner, J 1996Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, steams and leaves predominantly of gramineaeBiol. Fertil. Soils2197200Google Scholar
  37. Ortega, E, Rodés, R, Fuente, E, Fernàdez, L 2001Does the routine treatment of sugarcane stem pieces for xylem pathogen control affect the nitrogenase activity of an N2-fixing endophyte in the cane?Aust. J. Plant Physiol.28907912Google Scholar
  38. Reis, V M, Olivares, F L, Dòbereiner, J 1994Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its habitatWorld J. Microbiol. Biotechnol.10101104Google Scholar
  39. Rhodes, M E 1958The cytology of Pseudomonas spp. as revealed by a silver-plating staining methodJ. Gen. Microbiol.18639648PubMedGoogle Scholar
  40. Rodrìguez-Càceres, E A 1982Improved medium for isolation of Azospirillum sppAppl. Environ. Microbiol.44990991Google Scholar
  41. Socolofsky, M D, Wyss, O 1961Cysts of AzotobacterJ. Bacteriol.81946954Google Scholar
  42. Soil Conservation Service 1975 Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. US Department of Agriculture, Washington DC, USA. 436 pGoogle Scholar
  43. Sprent, J I, James, E K 1995N2-fixation by endophytic bacteria: questions of entry and operationFendrik, Idel Gallo, MVanderleyden, JZamaroczy, M eds. Azospirillum VI and Related MicroorganismsSpringer-VerlagBerlin, Germany1530Google Scholar
  44. Stephan, M P, Oliveira, M, Texeira, K R S, Martìnez-Drets, G, Dòbereiner, J 1991Physiology and dinitrogen fixation of Acetobacter diazotrophicusFEMS Microbiol. Lett.776772Google Scholar
  45. Triplett, E W 1996Diazotrophic endophytes: Progress and prospect for nitrogen fixation in monocotsPlant Soil1862938Google Scholar
  46. Ureta, A, Alvarez, B, Ramon, A, Vera, M A, Martinez-Drets, G 1995Identification of Acetobacter diazotrophicus, Herbaspirillum seropedicae and Herbaspirillum rubrisubalbicans using biochemical and genetic criteriaPlant Soil172271277Google Scholar
  47. Urquiaga, S, Cruz, K H S, Boddey, R M 1992Contribution of nitrogen fixation to sugarcane: 15N balance estimatesSoil Sci. Soc. Am. J.56105114Google Scholar
  48. Vela, G R, Wyss, O 1964Improved stain for visualization of Azotobacter encystmentJ. Bacteriol.67476477Google Scholar
  49. Vinuesa, P, Rademaker, J L W, Bruijn, F J, Werner, D 1998Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rDNA (16S rDNA) and 16S-23S rDNA intergenic spacers, re-petitive extragenic palindromic PCR gemomic fingerprint, and sequencingAppl. Environ. Microbiol.6420962104PubMedGoogle Scholar
  50. Yoneyama, T, Muraoka, T, Kim, T H, Decaney, E V, Nakanishi, Y 1997The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan)Plant Soil189239244Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • N. Tejera
    • 1
  • C. Lluch
    • 1
  • M. V. Martìnez-Toledo
    • 2
  • J. Gonzàlez-López
    • 2
  1. 1.Departamento de Fisiologìa Vegetal, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Instituto del AguaUniversidad de GranadaGranadaSpain

Personalised recommendations