Plant and Soil

, Volume 274, Issue 1–2, pp 237–250 | Cite as

Facilitative Root Interactions in Intercrops

  • H. Hauggaard-NielsenEmail author
  • E. S. Jensen


Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including nitrogen transfer between legumes and non-leguminous plants, exploitation of the soil via mycorrhizal fungi and soil-plant processes which alter the mobilisation of plant growth resources such as through exudation of amino acids, extra-cellular enzymes, acidification, competition-induced modification of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more intensified cropping systems using chemical and mechanical inputs also show that facilitative interactions definitely can be of significance. It is concluded that a better understanding of the mechanisms behind facilitative interactions may allow us to benefit more from these phenomena in agriculture and environmental management.

Key words

exudation facilitation intercrop isotope methodology mycorrhiza root system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M L, Fraley, L J 1991A review: Radiotracer methods to determine root distributionEnv. Exp. Bot.31110Google Scholar
  2. Altieri, M A 1999The ecological role of biodiversity in agroecosystemsAgr. Ecosyst. Environ.741931CrossRefGoogle Scholar
  3. Andersen M K, Hauggaard-Nielsen H, Ambus P and Jensen E S 2004 Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil, in press.Google Scholar
  4. Anil, L, Park, R H P, Miller, F A 1998Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UKGrass Forage Sci.53301317Google Scholar
  5. Begon, M, Harper, J L, Townsend, C R 1990Ecology: Individuals, Populations and CommunitiesBlackwell Scientific PublicationsCambridge945Google Scholar
  6. Bellostas, N M, Hauggaard-Nielsen, H, Andersen, M K, Jensen, E S 2004Early interference dynamics in intercrops of pea, barley and oilseed rapeBiol. Agria Hortic.21337348Google Scholar
  7. Brussaard, L, Kuyper, T W, Goede, R G M 2001On the relationships between nematodes, mycorrhizal fungi and plants: functional composition of species and plant performancePlant Soil232155165CrossRefGoogle Scholar
  8. Callaway, R M 1995Positive interactions among plantsBot Rev.61306349CrossRefGoogle Scholar
  9. Cassman, K G 1999Ecological intensification of cereal production systems: Yield potential., soil quality, and precision agricultureProc. Natl. Acad. Sci. USA9659525959CrossRefPubMedGoogle Scholar
  10. Choesin, D N, Boerner, R E J 1991Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae)Am. J. Bot7810831090Google Scholar
  11. Connolly, J, Goma, H C, Rahim, K 2001The information content of indicators in intercropping researchAgr. Ecosyst Environ.87191207CrossRefGoogle Scholar
  12. Crews, T E, Peoples, M B 2004Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needsAgr. Ecosyst. Environ.102279297CrossRefGoogle Scholar
  13. Dakora, F D 2003Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumesNew Phytol.1583949CrossRefGoogle Scholar
  14. Wit, C T, Bergh, J P 1965Competition between herbage plantsNeth. J. Agr. Sci.13212221Google Scholar
  15. DeRuijter, F J, Venn, B W, VanOijen, M 1996A comparison of soil core sampling and minirhizotrons to quantify root development of field-grown potatoesPlant Soil182301312Google Scholar
  16. Doll, H, Holm, U, Søgaard, B 1995Effect of crop density on competition by wheat and barley with Agrostemma githago and other weedsWeed Res.35391396Google Scholar
  17. Evans, J, O’Connor, G E, Turner, G L, Coventry, D R, Fettell, N A, Ma-honey, J, Armstrong, E L, Walsgott, D N 1989N2 fixation and its value to soil N increase in lupin, field pea and other legumes in south-eastern AustraliaAust J. Agric. Res.40791805CrossRefGoogle Scholar
  18. Francis, R, Read, D J 1994The contributions of mycorrhizal fungi to the determination of plant community structurePlant Soil1591125Google Scholar
  19. Fujita, K, Ofosu-Budu, K G, Ogata, S 1992Biological nitrogen fixation in mixed legume-cereal cropping systemsPlant Soil141155175CrossRefGoogle Scholar
  20. Fusseder, A, Kraus, M, Beck, E 1988Reassessment of root competition for P of field-grown maize in pure and mixed croppingPlant Soil106299301Google Scholar
  21. George, S J, Kumar, B M, Wahid, P A, Kamalam, N V 1996Root competition for phosphorus between the tree and herbaceous components of silvopastoral systems in Kerala, IndiaPlant Soil179189196CrossRefGoogle Scholar
  22. Giller, K E, Ormesher, J, Awah, F M 1991Nitrogen transfer from Phaseolus bean to intercropped maize measured using N15-Enrichment and Nl5-isotope dilution methodsSoil Biol. Biochem.23339346CrossRefGoogle Scholar
  23. Hansson, A-C, Andren, O 1987Root dynamics in barley, lucerne and meadow fescue investigated with a mini-rhizotron techniquePlant Soil1033338Google Scholar
  24. Hauggaard-Nielsen, H, Ambus, P, Jensen, E S 2001aInterspecific competition, N use and interference with weeds in pea-barley intercroppingField Crop. Res.70101109Google Scholar
  25. Hauggaard-Nielsen, H, Ambus, P, Jensen, E S 2001bTemporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops - a field study employing P-32 techniquePlant Soil2366374CrossRefGoogle Scholar
  26. Hauggaard-Nielsen, H, Ambus, P, Jensen, E S 2003The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barleyNutr, Cycl. Agroecosys.65289300CrossRefGoogle Scholar
  27. He, X H, Critchley, C, Bledsoe, C 2003Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs)Crit. Rev. Plant.22531567Google Scholar
  28. Hogh-Jensen, H, Schjoerring, J K 1997Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiencyPlant Soil197187199Google Scholar
  29. Hogh-Jensen, H, Schjoerring, J K 2000Below-ground nitrogen transfer between different grassland species: Direct quantification by 15N leaf feeding compared with indirect dilution of soil 15NPlant Soil227171183Google Scholar
  30. Hogh-Jensen, H, Schjoerring, J K 2001Rhizodeposition of nitrogen by red clover, white clover and ryegrass leysSoil Biol. Biochem.33439448Google Scholar
  31. Ikram, A, Jensen, E S, Jakobsen,  1994No significant transfer of N and P from Pueraria phaseoloides to Hevea braziliensis via hyphal links of arbuscular mycorrhizaSoil Biol. Biochem.2615411547CrossRefGoogle Scholar
  32. Israel, D W, Jackson, W A 1978The influence of nitrogen nutrition on ion uptake and translocation by leguminous plantsAndrew, C SKamprath, E J eds. Mineral Nutrition of Legumes in Tropical and Subtropical SoilsCommonwealth Scientific and Industrial Research OrganizationMelbourne, Australia113129Google Scholar
  33. Izaurralde R C, Mcgill W B and Juma N G 1992 Nitrogen-fixation efficiency, interspecies N transfer and root-growth hi barley-field pea intercrop on a black chernozemic soil. In Proceedings of the twenty-seventh annual conference of the Agronomy Society of New Zealand 13: 11–16Google Scholar
  34. Jacobs, E, Atsmon, D, Kafkafi, U 1970A convenient method placing radioactive substances in soil for studies of root developmentAgron. J.62303304Google Scholar
  35. Jakobsen, I 1994Research approaches to study the functioning of vesicular-arbuscular mycorrhizas in the fieldPlant Soil159141147Google Scholar
  36. Jensen E S 1997 The role of grain legume N2 fixation in the nitrogen cycling of temperate cropping systems. D.Sc. Thesis. Risø National Laboratory. R-885(EN). 86 pGoogle Scholar
  37. Jensen, E S 1996aBarley uptake of N deposited in the rhizosphere of associated field peaSoil Biol. Biochem.28159168Google Scholar
  38. Jensen, E S 1996bCompared cycling in a soil-plant system of pea and barley residue nitrogenPlant Soil1821323Google Scholar
  39. Jensen, E S 1996cGrain yield, symbiotic N2-fixation and interspecific competition for inorganic N in pea-barley intercropsPlant Soil1822538Google Scholar
  40. Jensen, E S 1996dRhizodeposition of N by pea and barley and its effect on soil N dynamicsSoil Biol. Biochem.286571Google Scholar
  41. Jensen, E S, Hauggaard-Nielsen, H 2003How can increased use of biological N2 fixation in agriculture benefit the environment?Plant Soil252177186CrossRefGoogle Scholar
  42. Jensen, E S, Sorensen, L H 1988Uptake of soil nitrogen by soybean as influenced by symbiotic N2 fixation or fertilizer nitrogen supplySoil Biol. Biochem.20921925CrossRefGoogle Scholar
  43. Johansen, A, Jensen, E S 1996Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungusSoil Biol. Biochem.287381CrossRefGoogle Scholar
  44. Johansen, A, Jakobsen, I, Jensen, E S 1992Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil NNew Phytol.122281288Google Scholar
  45. Jorgensen, F V, Jensen, E S, Schjoerring, J K 1999Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized 15N isotope dilution methodPlant Soil208293305Google Scholar
  46. Khan, D F, Peoples, M B, Chalk, P M, Herridge, D F 2002aQuantifying below-ground nitrogen of legumes. 2. A comparison of 15N and non isotopic methodsPlant Soil239277289CrossRefGoogle Scholar
  47. Khan, W D F, Peoples, M B, Herridge, D F 2002bQuantifying below-ground nitrogen of legumes. 1. Optimising procedures for 15N shoot-labellingPlant Soil245327334CrossRefGoogle Scholar
  48. Kirkegaard, J A, Howe, G N, Mele, P M 1999Enhanced accumulation of mineral-N following canolaAust. J. Exp. Agric.39587593CrossRefGoogle Scholar
  49. Kirkham, M B, Grecu, S J, Kanemasu, E T 1998Comparison of minirhizotrons and the soil-water-depletion method to determine maize and soybean root length and depthEur. J. Agron.8117125CrossRefGoogle Scholar
  50. Kumar, K, Goh, K M 2000Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recoveryAdv. Agron.68197319Google Scholar
  51. Lambers, H, Chapin, F S, Pons, T L 1998Plant Physiological EcologySpringer-VerlagNew YorkGoogle Scholar
  52. Lambers, H, Juniper, D, Cawthray, G R, Veneklaas, E J, Martinez-Ferri, E 2002The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soilPlant Soil238111122CrossRefGoogle Scholar
  53. Ledgard, S F, Freney, J R, Simpson, J R 1985Assessing nitrogen transfer from legumes to associated grassesSoil Biol. Biochem.17575577Google Scholar
  54. Li, L, Tang, C, Rengel, Z, Zhang, F 2003Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus sourcePlant Soil248297303CrossRefGoogle Scholar
  55. Li L, Sicun Y, Xiaolin L, Zhang F and Peter C 1999 Interspecific complementary and competitive interactions between intercropped maize and faba-bean. Plant Soil , 105–114.Google Scholar
  56. Liebman, M, Dyck, E 1993Crop rotation and intercropping strategies for weed managementEcol. Appl.392122Google Scholar
  57. Mackie-Dawson L A, Atkinson D 1991 Methodology for the study of roots in field experiments and the interpretation of results. In Plant Root Growth, an ecological. perspective. D Atkinson Ed. Blackwell Scientific Publications. Special. Publ. Brit. Ecol. Soc. 10, 25–47Google Scholar
  58. Marschner, P, Neumann, G, Kania, A, Weiskopf, L, Lieberei, R 2002Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.)Plant Soil246167174CrossRefGoogle Scholar
  59. Martensson, AM, Rydberg, I, Vestberg, M 1998Potential to improve transfer of N in intercropped systems by optimising host-endophyte combinationsPlant Soil2055766Google Scholar
  60. Martin, M P L D, Snaydon, R W, Drennan, D S H 1982Lithium as a nonradioactiye tracer for roots of intercropped speciesPlant Soil64203208CrossRefGoogle Scholar
  61. Matson, P A, Parton, W J, Power, A G, Swift, M J 1997Agricultural intensification and ecosystem propertiesScience277504509CrossRefPubMedGoogle Scholar
  62. Mayer, J, Buegger, F, Jensen, E S, Schloter, M, Hess, J 2003Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial processPlant Soil255541554CrossRefGoogle Scholar
  63. McConnaughay, K D M, Bazzaz, F A 1992The occupation and fragmentation of space: consequences of neighbouring rootsFunct. Ecol.6704710Google Scholar
  64. Natarajan, M, Willey, R W 1980aSorghum-pigeon pea intercropping and the effects of plant population density lGrowth and yield. Science955158Google Scholar
  65. Natarajan, M, Willey, R W 1980bSorghum-pigeon pea intercropping and the effects of plant population density 2Resource use Science955965Google Scholar
  66. Ofori, F, Stern, W R 1987Cereal-legume intercropping systemsAdv. Agron.414190Google Scholar
  67. Rengel, Z 2002Genetic control of root exudationPlant Soil2455970Google Scholar
  68. Ries, S K, Wert, V, Sweeley, C C, Leavitt, R A 1977Triacontanol: A new naturally occurring plant growth regulatorScience19513391341PubMedGoogle Scholar
  69. Rumberger, A, Marschner, P 20032-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canolaSoil Biol. Biochem.35445452CrossRefGoogle Scholar
  70. Sarwar, M, Kirkegaard, J A 1998Biofumigation potential of brassicas - II. Effect of environment and ontogeny on glucosi-nolate production and implications for screeningPlant Soil20191101Google Scholar
  71. Schweiger, P F, Jakobsen, I 1999Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheatAgron. J.919981002CrossRefGoogle Scholar
  72. Schweiger, P F, Spliid, N H, Jakobsen, I 2001Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peasSoil Biol. Biochem.3312311237CrossRefGoogle Scholar
  73. Shen, J, Rengel, Z, Tang, C, Zhang, F 2003Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus Plant Soil248199206CrossRefGoogle Scholar
  74. Smith, B J, Kirkegaard, J A 2002In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanatePlant Pathol.51585593CrossRefGoogle Scholar
  75. Søgaard, B, Doll, H 1992A positive allelopathic effect of corn cockle, Agrostemma githago, on wheat, Triticum aestivum Can. J. Bot7019161918Google Scholar
  76. Tarafdar, J C, Jungk, A 1987Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorousBiol. Fert. Soils3199204CrossRefGoogle Scholar
  77. Tofinga, M P, Paolini, R, Snaydon, R W 1993A study of root and shoot interactions between cereals and peas in mixturesScience1201324Google Scholar
  78. Toro, F J, Martin-Closas, L, Pelacho, A M 2003Jamonates promote cabbage (Brassica oleracea L. var capitata L.) root and shoot developmentPlant Soil2557783CrossRefGoogle Scholar
  79. Trannin W S, Urquiaga S, Guerra G, Ibijbijen J and Cadisch G 2000 Interspecies competition and N transfer in a tropical. grass-legume mixture. In Proceedings of the twenty-seventh annual conference of the Agronomy Society of New Zealand 32, 441–448Google Scholar
  80. Trenbath B R 1976 Plant interactions in mixed crop communities. In Multiple Cropping. Eds, R I Papendick, P A Sanchez, and G B Triplett. pp. 129–169. ASA Special Publication No. 27, ASA, SSSA, CSSA, Madison, WI, USAGoogle Scholar
  81. Trenbath, B R 1993Intercropping for the management of pests and diseasesField Crop. Res.34381405Google Scholar
  82. Trenbath, B R 1999Multispecies cropping systems in India – Predictions of their productivity, stability, resilience and ecological sustainabilityAgroforest. Syst.4581107CrossRefGoogle Scholar
  83. Krift, T A J, Kuikman, P J, Moller, F, Berendse, F 2001Plant species and nutritional-mediated control over rhizodeposition and root decompositionPlant Soil228191200Google Scholar
  84. Vandermeer, J H 1989The ecology of intercroppingCambridge University PressCambridge237Google Scholar
  85. Vandermeer, J H 1995The ecological basis of alternative agricultureAnnu. Rev. Ecol. Syst.26201224CrossRefGoogle Scholar
  86. Kessel, C, Singleton, P W, Hoben, H J 1985Enhanced N-transfer from soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungiPlant Physiol79562563PubMedGoogle Scholar
  87. Veneklaas, E J, Stevens, J, Cawthray, G R, Turner, S, Grigg, A M, Lambers, H 2003Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil248187197CrossRefGoogle Scholar
  88. Walker, T S, Bais, H P, Grotewold, E, Vivanco, J M 2003Root exudation and rhizosphere biologyPlant Physiol.1324451CrossRefPubMedGoogle Scholar
  89. Wamberg, C, Christensen, S, Jakobsen, I, Muller, A K, Sorensen, S J 2003The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum)Soil Biol. Biochem.3513491357CrossRefGoogle Scholar
  90. Ward, K J, Klepper, B, Rickman, R W, Allmaras, R R 1978Quantitative estimaion of living wheat-root lenghts in soil coresAgron. J.70675677CrossRefGoogle Scholar
  91. Waterer, J G, Vessey, J K, Stobbe, E H, Soper, R J 1994Yield and symbiotic nitrogen fixation in a pea mustard intercrop as influenced by N fertilizer additionSoil Biol. Biochem.26447453CrossRefGoogle Scholar
  92. Willey, R W 1979aIntercropping – Its importance and research needs. Part 1. Competition and yield advantagesField. Crop. Abstr.32110Google Scholar
  93. Willey, R W 1979bIntercropping – Its importance and research needs. Part 2. Agronomy and research approachesField. Crop. Abstr.327385Google Scholar
  94. Yan F, Schubert S and Mengel K 1996 Soil pH changes during legume growth and application of plant material. In Proceedings of the twenty-seventh annual conference of the Agronomy Society of New Zealand 23, 236–242Google Scholar
  95. Yao, Q, Li, X L, Ai, W D, Christie, P 2003Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal linksEur. J. Soil. Biol.394754CrossRefGoogle Scholar
  96. Zhang, F, Li, L 2003Using competitive and facilitative interactions in intercropping systems enhance crop productivity and nutrient-use efficiencyPlant Soil248305312CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Plant Research Dept.Risø National LaboratoryRoskildeDenmark

Personalised recommendations