Plant and Soil

, Volume 269, Issue 1–2, pp 45–56 | Cite as

Rhizoeconomics: Carbon costs of phosphorus acquisition

  • Jonathan P. Lynch
  • Melissa D. Ho
  • Low phosphorus
Article

Abstract

Plants display a wide array of physiological adaptations to low soil phosphorus availability. Here we discuss metabolic and ecological costs associated with these strategies, focusing on the carbon costs of root traits related to phosphorus acquisition in crop plants. We propose that such costs are an important component of adaptation to low phosphorus soils. In common bean, genotypes with superior low phosphorus adaptation express traits that reduce the respiratory burden of root growth, including greater allocation to metabolically inexpensive root classes, such as adventitious roots, and greater formation of cortical aerenchyma, which reduces specific root respiration. Root hair formation increases phosphorus acquisition at minimal carbon cost, but may have other unknown ecological costs. Mycorrhizas and root exudates enhance phosphorus acquisition in some taxa, but at significant carbon cost. Root architectural patterns that enhance topsoil foraging enhance phosphorus acquisition but appear to incur tradeoffs for water acquisition and spatial competition. A better understanding of the metabolic and ecological costs associated with phosphorus acquisition strategies is needed for an intelligent deployment of such traits in crop improvement programs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amthor, J S 2000The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years laterAnn. Bot.86120CrossRefGoogle Scholar
  2. Anderson, G 1980

    Assessing organic phosphorus in soils

    Khasawneh, F ESample, E CKamprath, E J eds. The Role of Phosphorus in AgricultureASA, CSSA, SSSAMadison, USA411431
    Google Scholar
  3. Bates, T, Lynch, J 2000aPlant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae)Amer. J. Bot.87958963Google Scholar
  4. Bates, T R, Lynch, J P 2000bThe efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisitionAmer. J. Bot.87964970Google Scholar
  5. Bates, T R, Lynch, J P 2001Root hairs confer a competitive advantage under low phosphorus availabilityPlant Soil236243250CrossRefGoogle Scholar
  6. Bates, T R, Lynch, J P 1996Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availabilityPlant Cell Environ.19529538Google Scholar
  7. Bloom, A J, Chapin, F S I, Mooney, H A 1985Resource limitation in plants – An economic analogyAnn. Rev. Ecol. Syst.1633392Google Scholar
  8. Bonser, A M, Lynch, J, Snapp, S 1996Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgarisNew Phytol.132281288PubMedGoogle Scholar
  9. Casper, B, Schenk, H J, Jackson, R 2003Defining a plant’s belowground zone of influenceEcology8423132321Google Scholar
  10. Chapin, F S, Bloom, A J, Field, C B, Waring, R H 1987Plant responses to multiple environmental factorsBiosci.374957Google Scholar
  11. Chu, W K, Chang, S C 1966Surface activity of inorganic soil phosphorusSoil Sci.101459464Google Scholar
  12. CIAT 1999 Bean Project: Annual Report. CIAT (Centro Internacional de Agricultura Tropical), Cali, ColumbiaGoogle Scholar
  13. Ciereszko, I, Gniazdowska, A, Mikulska, M, Rychter, A M 1996Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiencyJ. Plant Physiol.149343348Google Scholar
  14. DeWitt, T J, Sih, A, Wilson, D S 1998Costs and limits of phenotypic plasticityTrends Ecol. Evol.137781CrossRefGoogle Scholar
  15. Diem, H G, Duhoux, E, Zaid, H, Arahou, M 2000Cluster roots in Casuarinaceae: role and relationship to soil nutrient factorsAnn. Bot.85929936CrossRefGoogle Scholar
  16. Dinkelaker, B, Hengeler, C, Marschner, H 1995Distribution and function of proteoid roots and other root clustersBot. Acta108183200Google Scholar
  17. Dinkelaker, B, Romheld, V, Marschner, H 1989Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)Plant Cell Environ.12285292Google Scholar
  18. Douds, D D, Johnson, C R, Koch, K E 1988Carbon cost of the fungal symbiont relative to net leaf-P accumulation in a split-root VA mycorrhizal symbiosisPlant Physiol.86491496Google Scholar
  19. Drew, M C, He, C, Morgan, P W 2000Programmed cell death and aerenchyma formation in rootsTrends Plant Sci.5123127CrossRefPubMedGoogle Scholar
  20. Drew, M C, He, C J, Morgan, P W 1989Decreased ethylene biosynthesis, and induction of Aerenchyma, by nitrogen-starvation or phosphate-starvation in adventitious roots of Zea-mays LPlant Physiol.91266271Google Scholar
  21. Eissenstat, D 1992Costs and benefits of constructing roots of small diameterJ. Plant Nutr.15763782Google Scholar
  22. Eissenstat, D M, Graham, J H, Syvertsen, J P, Drouillard, D L 1993Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus statusAnn. Bot.71110CrossRefGoogle Scholar
  23. Elliott, G C, Lynch, J, Läuchli, A 1984Influx and efflux of P in roots of intact maize plants. Double-labeling with 32P and 33PPlant Physiol.76336341Google Scholar
  24. Enwezor, W O, Moore, A W 1966Phosphorus status of some Nigerian soilsSoil Sci.102322328Google Scholar
  25. Eshel, A, Nielsen, K, Lynch, J 1995

    Response of bean root systems to low level of P

    Plant Roots – From Cells to Systems14th Long Ashton International Symposium. IACR-Long Ashton Res. St. Bristol, EnglandBristol, England63
    Google Scholar
  26. Fan, M S, Zhu, J M, Richards, C, Brown, K M, Lynch, J P 2003Physiological roles for aerenchyma in phosphorus-stressed rootsFunct. Plant Biol.30493506CrossRefGoogle Scholar
  27. Fisher, M C T, Eissenstat, D M, Lynch, J P 2002Lack of evidence for programmed root senescence in common bean (Phaseolus vulgaris L.) grown at different levels of phosphorus supplyNew Phytol.1536371CrossRefGoogle Scholar
  28. Foehse, D, Claassen, N, Jungk, A 1991Phosphorus efficiency of plants II Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant speciesPlant Soil132261272Google Scholar
  29. Foehse, D, Jungk, A 1983Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plantsPlant Soil74359368CrossRefGoogle Scholar
  30. Gahoonia, T S, Nielsen, N E, Lyshede, O B 1999Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilizationPlant Soil211269281CrossRefGoogle Scholar
  31. Gardner, W, Barber, D, Parberry, D 1983The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhancedPlant Soil70107124Google Scholar
  32. Ge, Z Y, Rubio, G, Lynch, J P 2000The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: Results from a geometric simulation modelPlant Soil218159171CrossRefPubMedGoogle Scholar
  33. Gersani, M, Brown, J S, O’Brien, E, Maina, G G, Abramsky, Z 2001Tragedy of the commons as a result of root competitionJ. Ecol.89661669CrossRefGoogle Scholar
  34. Gleeson, S, Tilman, D 1992Plant allocation and the multiple limitation hypothesisAmer. Nat.13913221343Google Scholar
  35. Grime, J P, Mackey, J M L 2002The role of plasticity in resource capture by plantsEvol. Ecol.16299307CrossRefGoogle Scholar
  36. Gutschick, V 1993Nutrient-limited growth rates: Roles of nutrient-use efficiency and of adaptations to increase uptake rateJ. Exp. Bot.444151Google Scholar
  37. Hansen, C W, Lynch, J, Ottosen, C O 1998Response to phosphorus availability during vegetative and reproductive growth of chrysanthemum: I. Whole-plant carbon dioxide exchangeJ. Amer. Soc. Hort. Sci.123215222Google Scholar
  38. Harris, D, Paul, E 1987

    Carbon requirements of vesicular-arbuscular mycorrhizae

    Safir, G R eds. Ecophysiology of VA MycorrhizaeCRC PressBoca Raton, FL93105
    Google Scholar
  39. Hinsinger, P 2001Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A reviewPlant Soil237173195CrossRefGoogle Scholar
  40. Hinsinger, P, Plassard, C, Tang, C X, Jaillard, B 2003Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A reviewPlant Soil2484359CrossRefGoogle Scholar
  41. Ho, M D, McCannon, B M, Lynch, J P 2004Optimization modeling of root architecture for water and phosphorus acquisitionJ. Theor. Biol.226331340CrossRefPubMedGoogle Scholar
  42. Horton J L, Hart S C 1998 Hydraulic lift: A potentially important ecosystem process. Trends Ecol. Evol. 13Google Scholar
  43. Huang, B, Eissenstat, D M 2000

    Root plasticity in exploiting water and nutrient heterogeneity

    Wilkinson, R E eds. Plant-environment InteractionsMarcel Dekker, Inc.Ney Work, NY
    Google Scholar
  44. Jackson, M B, Armstrong, W 1999Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergencePlant Biol.1274287Google Scholar
  45. Jackson, R B, Caldwell, M M 1996Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environmentJ. Ecol.84891903Google Scholar
  46. Jakobsen, I, Rosendahl, L 1990Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plantsNew Phytol.1157783Google Scholar
  47. Johnson, J F, Allan, D L, Vance, C P, Weiblen, G 1996aRoot carbon dioxide fixation by phosphorus-deficient Lupinus albus: Contribution to organic acid exudation by proteoid rootsPlant Physiol.1121930CrossRefGoogle Scholar
  48. Johnson, J F, Vance, C P, Allan, D L 1996bPhosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylasePlant Physiol.1123141CrossRefGoogle Scholar
  49. Jones, D L 1998Organic acids in the rhizosphere – A critical reviewPlant Soil2052544CrossRefGoogle Scholar
  50. Keter, J K A, Ahn, P A 1986Profile characteristics, and form and surface activity of inorganic phosphorus in a deep red Kenya coffee soil (Nitosol)J. Soil Sci.378997Google Scholar
  51. Kirk, G J D, Santos, E E, Findenegg, G R 1999Phosphate solubilization by organic anion excretion from rice (Oryza sativa L.) growing in aerobic soilPlant Soil2111118CrossRefGoogle Scholar
  52. Koch, K E, Johnson, C R 1984Photosynthate partitioning in split root citrus seedlings with mycorrhizal and non-mycorrhizal root systemsPlant Physiol.752630Google Scholar
  53. Koide, R 1991Nutrient supply, nutrient demand and plant response to mycorrhizal infectionNew Phytol.117365386Google Scholar
  54. Koide, R, Elliott, G 1989Cost, Benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosisFunct. Ecol.3252255Google Scholar
  55. Koide, R T, Goff, M D, Dickie, I A 2000Component growth efficiencies of mycorrhizal and nonmycorrhizal plantsNew Phytol.148163168Google Scholar
  56. Konings, H, Verschuren, G 1980Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supplyPhysiol. Plant.49265279Google Scholar
  57. Lambers, H, Atkin, O, Millenaar, F F 2002

    Respiratory patterns in roots in relation to their functioning

    Waisel, YEshel, AKafkaki, U eds. Plant Roots, the Hidden Half3Marcel Dekker, IncNew York, NY521552
    Google Scholar
  58. Liao, H, Rubio, G, Yan, X L, Cao, A Q, Brown, K M, Lynch, J P 2001Effect of phosphorus availability on basal root shallowness in common beanPlant Soil2326979CrossRefPubMedGoogle Scholar
  59. Lopez-Bucio, J, Nieto-Jacobo, M F, Ramirez-Rodriguez, V, Herrera-Estrella, L 2000Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soilsPlant Sci.160113PubMedGoogle Scholar
  60. Lu, Y, Wassmann, R, Neue, H U, Huang, C 1999Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plantsBiochemistry47203218Google Scholar
  61. Lynch, J 1998

    The role of nutrient efficient crops in modern agriculture

    Rengel, Z eds. Nutrient Use in Crop ProductionFood Products PressNew York
    Google Scholar
  62. Lynch, J 1995Root architecture and plant productivityPlant Physiol.109713PubMedGoogle Scholar
  63. Lynch, J, Deikman, J 1998Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem ProcessesAmerican Society of Plant PhysiologistsRockville, MDGoogle Scholar
  64. Lynch, J, Lauchli, A, Epstein, E 1991Vegetative growth of the common bean in response to phosphorus nutritionCrop Sci.31380387Google Scholar
  65. Lynch, J, Rodriguez, N S 1994Photosynthetic nitrogen-use efficiency in relation to leaf longevity in common beanCrop Sci.3412841290Google Scholar
  66. Lynch, J P, Beebe, S E 1995Adaptation of beans to low soil phosphorus availabilityHortSci.3011651171Google Scholar
  67. Lynch, J P, Brown, K M 2001Topsoil foraging – An architectural adaptation of plants to low phosphorus availabilityPlant Soil237225237CrossRefGoogle Scholar
  68. Ma, Z, Bielenberg, D G, Brown, K M, Lynch, J P 2001aRegulation of root hair density by phosphorus availability in Arabidopsis thalianaPlant Cell Environ.24459467CrossRefGoogle Scholar
  69. Ma, Z, Walk, T C, Marcus, A, Lynch, J P 2001bMorphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling approachPlant Soil236221235CrossRefGoogle Scholar
  70. Malusa, E, Laurenti, E, Juszczuk, I, Ferrari, R P, Rychter, A M 2002Free radical production in roots of Phaseolus vulgaris subjected to phosphate deficiency stressPlant Physiol. Biochem.40963967Google Scholar
  71. Marschner, H, Römheld, V 1996

    Root-induced changes in the availability of micronutrients in the Rhizosphere

    Waisel, YEshel, AKafkaki, U eds. Plant Roots, the Hidden Half2Marcel Dekker, IncNew York, NY521552
    Google Scholar
  72. Miller, C R, Ochoa, I, Nielsen, K L, Beck, D, Lynch, J P 2003Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soilsFunct. Plant Biol.30973985Google Scholar
  73. Neumann, G, Martinoia, E 2002Cluster roots – An underground adaptation for survival in extreme environmentsTrends Plant Sci.7162167CrossRefPubMedGoogle Scholar
  74. Nguyen, C 2003Rhizodeposition of organic C by plants: Mechanisms and controlsAgronomie23375396CrossRefGoogle Scholar
  75. Nielsen, K L, Bouma, T J, Lynch, J P, Eissenstat, D M 1998Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris)New Phytol.139647656CrossRefGoogle Scholar
  76. Nielsen, K L, Eshel, A, Lynch, J P 2001The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypesJ. Exp. Bot.52329339CrossRefPubMedGoogle Scholar
  77. Niklas, K 1994Plant Allometry: The Scaling of Form and ProcessUniversity of Chicago PressChicago, ILGoogle Scholar
  78. Peng, S B, Eissenstat, D M, Graham, J H, Williams, K, Hodge, N C 1993Growth depression in mycorrhizal citrus at high-phosphorus supply – Analysis of carbon costsPlant Physiol.10110631071PubMedGoogle Scholar
  79. Pothuluri, J V, Kissel, D E, Whitney, D A, Thien, S J 1986Phosphorus uptake from soil layers having different soil test phosphorus levelsAgron. J.78991994Google Scholar
  80. Raghothama, K 1999Phosphate acquisitionAnn. Rev. Plant Physiol. Plant Mol. Biol.50665693Google Scholar
  81. Reich, P B 2002

    Root–shoot Relations: Optimality in acclimation and adaptation or the ‘Emperor’s New Clothes’?

    Waisel, YEshel, AKafkafi, U eds. Plant Roots: The Hidden HalfMarcel DekkerNew York, NY205220
    Google Scholar
  82. Rubio, G, Liao, H, Yan, X L, Lynch, J P 2003aTopsoil foraging and its role in plant competitiveness for phosphorus in common beanCrop Sci.43598607Google Scholar
  83. Rubio, G, Walk, T, Ge, Z Y, Yan, X L, Liao, H, Lynch, J P 2001Root gravitropism and below-ground competition among neighbouring plants: A modeling approachAnn. Bot.88929940CrossRefGoogle Scholar
  84. Rubio, G, Zhu, J, Lynch, J P 2003bA critical test of the two prevailing theories of plant response to nutrient availabilityAmer. J. Bot.90143152Google Scholar
  85. Ryan, M H, Graham, J H 2002Is there a role for arbuscular mycorrhizal fungi in production agriculture?Plant Soil244263271CrossRefGoogle Scholar
  86. Ryan, P R, Delhaize, E, Jones, D L 2001Function and mechanism of organic anion exudation from plant rootsAnn. Rev. Plant Physiol. Plant Mol. Biol.52527560Google Scholar
  87. Rychter, A M, Chauveau, M, Bomsel, J L, Lance, C 1992The effect of phosphate deficiency on mitochondrial activity and adenylate levels in bean rootsPhysiol. Plant.848086CrossRefGoogle Scholar
  88. Rychter, A M, Mikulska, M 1990The relationship between phosphate status and cyanide-resistant respiration in bean rootsPhysiol. Plant.79663667CrossRefGoogle Scholar
  89. Smith, F W 2001Sulphur and phosphorus transport systems in plantsPlant Soil232109118CrossRefGoogle Scholar
  90. Smith, S E, Read, D J 1997Mycorrhizal SymbiosisAcademic PressSan Diego, CA605Google Scholar
  91. Snapp, S S, Koide, R, Lynch, J 1995Exploitation of localized phosphorus patches by common bean rootsPlant Soil177211218CrossRefGoogle Scholar
  92. Snapp, S S, Lynch, J P 1996Phosphorus distribution and remobilization in bean plants as influenced by phosphorus nutritionCrop Sci.36929935Google Scholar
  93. Theodorou, M E, Plaxton, W C 1993Metabolic adaptations of plant respiration to nutritional phosphate deprivationPlant Physiol.101339344PubMedGoogle Scholar
  94. Van der Berg, H 1998Multiple nutrient limitation in unicellulars: Reconstructing Liebig’s LawMath. Biosci.149122Google Scholar
  95. Van der Werf, A, Welschen, R, Lambers, H 1992

    Respiratory losses increase with decreasing inherent growth rate of a species and with decreasing nitrate supply: A search for explanations for these observations

    Lambers, HVan der Plas, L eds. Molecular, Biochemical, and Physiological Aspects of Plant RespirationSPB Academic PublishingThe Hague
    Google Scholar
  96. Vance, C P, Uhde-Stone, C, Allan, D L 2003Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resourceNew Phytol.157423447CrossRefGoogle Scholar
  97. Wahl, S, Ryser, P 2000Root tissue structure is linked to ecological strategies of grassesNew Phytol.148459471CrossRefGoogle Scholar
  98. Wissuwa, M 2003How do plants achieve tolerance to phosphorus deficiency? Small causes with big effectsPlant Physiol.133112CrossRefGoogle Scholar
  99. Yan X, Liao H, Becbe S E, Blair M W, Lynch J P 2004 QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil (in press)Google Scholar
  100. Zobel, R W 1992Root morphology and developmentJ. Plant Nutr.15677684Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jonathan P. Lynch
    • 1
    • 2
  • Melissa D. Ho
    • 1
  • Low phosphorus
    • 1
  1. 1.Intercollege Program in Plant PhysiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of HorticultureThe Pennsylvania State UniversityUSA

Personalised recommendations