Plant and Soil

, Volume 269, Issue 1–2, pp 369–380 | Cite as

Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding?

  • Graham Lyons
  • Ivan Ortiz-Monasterio
  • James Stangoulis
  • Robin Graham
Article

Abstract

Selenium (Se) is an essential micronutrient for humans and animals, with antioxidant, anti-cancer and anti-viral effects, and wheat is an important dietary source of this element. In this study, surveys of Se concentration in grain of ancestral and wild relatives of wheat, wheat landrace accessions, populations, and commercial cultivars grown in Mexico and Australia were conducted. Cultivars were also grown under the same conditions to assess genotypic variation in Se density. Eleven data sets were reviewed with the aim of assessing the comparative worth of breeding compared with fertilising as a strategy to improve Se intake in human populations. Surveys and field trials that included diverse wheat germplasm as well as other cereals found grain Se concentrations in the range 5–720μgkg−1, but much of this variation was associated with spatial variation in soil selenium. This study detected no significant genotypic variation in grain Se density among modern commercial bread or durum wheat, triticale or barley varieties. However, the diploid wheat, Aegilops tauschii and rye were 42% and 35% higher, respectively, in grain Se concentration than other cereals in separate field trials, and, in a hydroponic trial, rye was 40% higher in foliar Se content than two wheat landraces. While genotypic differences may exist in modern wheat varieties, they are likely to be small in comparison with background soil variation, at least in Australia and Mexico. Field sites that are spatially very uniform in available soil Se would be needed to allow comparison of grain Se concentration and content in order to assess genotypic variation.

Keywords

Aegilops tauschiigenotypic variation grain rye (Secale cereale L.) selenium bread wheat (Triticum aestivum L.) 

Abbreviations

CIMMYT

Centro Internacional de Mejoramiento de Maiz y Trigo (International Maize

DH

doubled-haploid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, ML, Lombi, E, Zhao, F-J., McGrath, SP. 2002Evidence of low selenium concentrations in UK bread-making wheat grainJ. Sci. Food Agr.8211601165CrossRefGoogle Scholar
  2. Alfthan G., Neve J. (1996). Selenium intakes and plasma selenium levels in various populations. In Natural Antioxidants and Food Quality in Atherosclerosis and Cancer Prevention. Eds. J Kumpulainen and J Salonen. pp.161–167. Royal Society of Chemistry, Cambridge.Google Scholar
  3. Aro, A, Alfthan, G., Varo, P. 1995Effects of supplementation of fertilizers on human selenium status in FinlandAnalyst120841843CrossRefPubMedGoogle Scholar
  4. Arthur, JR. 1999Functional indicators of iodine and selenium statusProc. Nutr. Soc.58507512PubMedGoogle Scholar
  5. Babidge, PJ. 1990Selenium concentrations in South Australian wheat and barleyProc. Aust. Soc. Anim. Prod.18452Google Scholar
  6. Balint, AF, Kovacs, G, Erdei, L., Sutka, J. 2001Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat speciesCereal Res. Comm.29375382Google Scholar
  7. Banuelos G., Schrale G. (1989). Plants that remove selenium from soils. Calif. Agric. May-June 1989, 19–20Google Scholar
  8. Barrett J, Patterson C, Reilly C., Tinggi U 1989 Selenium in the diet of children with phenylketonuria. In Nutrient Availability: Chemical and Biological Aspects. Eds. DAT Southgate, IT Johnson and GR Fenwick. pp.281–283. Royal Society of Chemistry, London.Google Scholar
  9. Cakmak, I, Tolay, I, Ozdemir, A, Ozkan, H., Kling, CI. 1999Differences in zinc efficiency among and within diploid, tetraploid and hexaploid wheatsAnn. Bot.84163171CrossRefGoogle Scholar
  10. Cakmak, I, Kalayci, M, Ekiz, H, Braun, HJ, Kilinc, Y, Yilmaz, A, Welch, RM., Graham, RD. 1999Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability projectField Crops Res.60175188Google Scholar
  11. Cary, EE., Allaway, WH. 1969The stability of different forms of selenium applied to low-selenium soilsSoil Sci. Soc. Am. Pro33571Google Scholar
  12. Cary, EE., Gissel-Nielsen, G. 1973Effect of fertiliser anions on the solubility of native and applied selenium in soilSoil Sci. Soc. Am. Pro37590Google Scholar
  13. Chalmers, KJ, Campbell, AW, Kretschmer, J, Karakousis, A, Henschke, PH, Pierens, S, Harker, N, Pallotta, M, Cornish, GB, Shariflou, MR, Rampling, LR, McLaughlin, A, Daggard, G, Sharp, PJ, Holton, TA, Sutherland, MW, Appels, R., Langridge, P. 2001Construction of three linkage maps in bread wheat, Triticum aestivumAust. J. Agr. Res.5210891119CrossRefGoogle Scholar
  14. Combs, GF. 2001Selenium in global food systemsBrit. J. Nutr.85517547PubMedGoogle Scholar
  15. Elrashidi M A, Adriano DC., Lindsay WL 1989 Solubility, speciation and transformation of selenium in soils. In Selenium in Agriculture and the Environment. Ed. WL Jacobs. Soil Science Society of America, Special Publication No. 23: 51–63, Madison, WI.Google Scholar
  16. Eurola, M, Ekholm, P, Ylinen, M, Koivistoinen, P., Varo, P. 1990Effects of selenium fertilization on the selenium content of cereal grains, flour, and bread produced in FinlandCereal Chem67334337Google Scholar
  17. Gibson, RS. 1994Zinc nutrition and public health in developing countriesNutr. Res. Rev.7151173CrossRefGoogle Scholar
  18. Gissel-Nielsen G. (1998). Effects of selenium supplementation of field crops. In Environmental Chemistry of Selenium. Eds. WT Frankenberger and RA Engberg. pp.99–112. Dekker, New YorkGoogle Scholar
  19. Goodson, CC, Parker, DR, Amrhein, C., Zhang, Y. 2003Soil selenium uptake and root system development in plant taxa differing in Se-accumulating capabilityNew Phytol.159391401CrossRefGoogle Scholar
  20. Graham, RD. 1978Tolerance of Triticale, wheat and rye to copper deficiencyNature271542543CrossRefGoogle Scholar
  21. Graham R D., Welch RM 1996 Breeding for staple food crops with high micronutrient density. In Agricultural Strategies for Micronutrients – Working Paper3, International Food Policy Research Institute, Washington DCGoogle Scholar
  22. Graham, RD, Welch, RM., Bouis, HE. 2001Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gapsAdv. Agron.7077142Google Scholar
  23. Grela, ER. 1996Nutrient composition and content of antinutritional factors in spelt (T.Spelta L) cultivarsJ. Sci. Food Agr.71399404CrossRefGoogle Scholar
  24. Hawkesford M J., Prosser IM 2000 The plant sulfate transporter family. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Ed. CBrunold. pp.263–264. Paul Haupt, Bern.Google Scholar
  25. Kammholz, SJ, Campbell, AW, Sutherland, MW, Hollamby, GJ, Martin, PJ, Eastwood, RF, Barclay, I, Wilson, RE, Brennan, PS., Sheppard, JA. 2001Establishment and characterization of wheat genetic mapping populationsAust. J. Agr. Res.5210791088CrossRefGoogle Scholar
  26. Kozak, L., Tarkowski, C. 1979Contents of Cu, Zn, Mn, Fe and Mg in triticale, wheat and rye at different growth stagesRoczniki Nauk Rolniczych A104113129Google Scholar
  27. Lyons, GH, Stangoulis, JCR., Graham, RD. 2003High-selenium wheat: biofortification for better healthNutr. Res. Rev.164560CrossRefGoogle Scholar
  28. Lyons, GH, Lewis, J, Lorimer, MF, Holloway, RE, Brace, DM, Stangoulis, JCR., Graham, RD. 2004High-selenium wheat: agronomic strategies to improve human nutritionFood Agr. Environ.2171178Google Scholar
  29. Lyons, GH, Judson, GJ, Stangoulis, JCR, Palmer, LT, Jones, JA., Graham, RD. 2004Trends in selenium status of South AustraliansMed. J. Aust.180383386PubMedGoogle Scholar
  30. Monasterio, I., Graham, RD. 2000Breeding for trace minerals in wheatFood Nutr. Bull.21392396Google Scholar
  31. Nelson, J, Van Deynze, AE, Autrique, E, Sorrells, ME, Lu, YH, Negre, S, Bernard, M., Leroy, P. 1995Molecular mapping of wheatHomologous group3525533Google Scholar
  32. Noble, RM., Barry, GA. 1982Survey of selenium concentrations in wheat, sorghum and soybean grains, prepared poultry feeds and feed ingredients from QueenslandQld. J. Agr. Anim. Sci.3918Google Scholar
  33. Pezzarossa, B, Piccotino, D, Shennan, C., Malorgio, F. 1999Uptake and distribution of selenium in tomato plants as affected by genotype and sulphate supplyJ. Plant Nutr.2216131635Google Scholar
  34. Piergiovanni, AR, Rizzi, R, Pannacciulli, E., Della Gatta, C. 1997Mineral composition in hulled wheat grains: a comparison between emmer (Triticum dicoccon Schrank) and spelt (T.Spelta L) accessionsInt. J. Food Sci. Nutr.48381386Google Scholar
  35. Rayman, MP. 2002The argument for increasing selenium intakeProc. Nutr. Soc.61203215PubMedGoogle Scholar
  36. Seregina II, Nilovskaya NT, Ostapenko NO. (2001). The role of selenium in the formation of the grain yield in spring wheat. Agrokhimiya 1: 44–50Google Scholar
  37. Tracy, MI., Moller, G. 1990Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysisPart1SeleniumJ Assoc Off Anal Chem 73 404410Google Scholar
  38. Tveitnes, S, Singh, BR., Ruud, L. 1996Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizersFert. Res.45163167Google Scholar
  39. University of California 1988 Selenium, human health and irrigated agriculture. In Resources at Risk in the San Joaquin Valley. Agricultural Issues Centre, Davis, University of California.Google Scholar
  40. White, CL, Robson, AD., Fisher, HM. 1981Variation in nitrogen, sulphur, selenium, cobalt, manganese, copper and zinc contents of grain from wheat and two lupin species grown in a range of Mediterranean environmentsAust. J. Agr. Res.324759CrossRefGoogle Scholar
  41. Yang, F, Chen, L, Hu., , Pan, G. 2003Effect of the application of selenium on selenium content of soybean and its productsBiol. Trace Elem. Res.93249256CrossRefPubMedGoogle Scholar
  42. Ylaranta, T. 1983Effect of added selenite and selenate on the selenium content of Italian rye grass (Lolium multiflorum) in different soilsAnn. Agr. Fenn.22139151Google Scholar
  43. Zhang, Y, Pan, G, Chen, J., Hu, Q. 2003Uptake and transport of selenite and selenate by soybean seedlings of two genotypesPlant Soil253437443CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Graham Lyons
    • 1
  • Ivan Ortiz-Monasterio
    • 2
  • James Stangoulis
    • 1
  • Robin Graham
    • 1
  1. 1.School of Agriculture and WineUniversity of AdelaideGlen OsmondSouth Australia
  2. 2.Centro Internacional de Mejoramiento de Maiz y Trigo (International Maize and Wheat Improvement Centre) (CIMMYT)Mexico

Personalised recommendations