Plant and Soil

, Volume 269, Issue 1–2, pp 109–115 | Cite as

Water table fluctuations and groundwater supply are important in preventing phosphate-eutrophication in sulphate-rich fens: Consequences for wetland restoration

  • Esther C. H. E. T. LucassenEmail author
  • Alfons J. P. Smolders
  • Leon P. M. Lamers
  • Jan G. M. Roelofs


Nitrate leaching from agricultural land leads to oxidiation of FeS x in FeS x -containing subsoils resulting in SO 4 2− mobilisation. Pollution of the groundwater with SO 4 2− causes a higher availability of o-PO 4 3− , eutrophication and loss in biodiversity in groundwater fed fens with stagnating surface water. Under natural conditions, fens along the river Meuse are continuously fed by groundwater that besides SO 4 2− mostly also contains high concentrations of NO 3 and bivalent cations (Ca2+ and mg2+). During summer groundwater input is restricted resulting in periodic drought. Under these conditions no SO 4 2− induced o-PO 4 3− eutrophication occurs. Periodic drought and a high discharge of NO 3 , have a strong effect on S and P biogeochemistry in sulphate-rich fens. NO 3 inhibits SO 4 2− reduction and concomitant o-PO 4 3− mobilisation in fen sediments by being an energetically more favourable electron acceptor. In addition, NO 3 is capable of oxidising reduced Fe compounds, including FeS x , increasing the amount of oxidised Fe in the sediment capable of binding o-PO 4 3− . Periodic drought is important in reincreasing the concentration of oxidised Fe in the top layer of S-rich sediments preventing o-PO 4 3− mobilisation and an undesirable vegetation development. Damming of surface water, in order te restore desiccated sulphate-rich fens, prevents periodic drought and decreases groundwater input. This leads to NO 3 depletion, stimulation of SO 4 2− reduction, Fe depletion, o-PO 4 3− mobilisation and, in contrast to what was hoped for, in massive growth of algae, lemnids and fast growing wetland grasses. Therefore discharge of NO 3 – rich groundwater and the fluctuation of the water table are vital for succesful restoration of desiccated sulphate-rich fens. Successful rewetting of these type of fens, without causing stagnation of surface water and without preventing periodic drought, can be achieved by raising the water table to levels below the potential groundwater table using a controllable dam.


agricultural pollution nitrate sediment desiccation vegetation water dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, J M 1982Effect of NO 3 concentration in lake water on phosphate release from sedimentWat. Res.1611191126CrossRefGoogle Scholar
  2. Aravena, R, Robertson, W D 1998Use of multiple tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plumeGround Water36975982CrossRefGoogle Scholar
  3. Beltman, B, Rouwenhorst, T G, Kerkhoven, M B, Drift, T, Verhoeven, JTA 2000Internal eutrophication in peat soils through competition between chloride and sulphate with phosphate for binding sitesBiogeochemistry50183194CrossRefGoogle Scholar
  4. Boström, B, Jansson, m, Forsberg, C 1982Phosphorus release from lake sedimentsArch. Hydrobiol.18559Google Scholar
  5. Boxman, A W, Stortelder, A H F 2000Hoe natter, hoe beter? De invloed van het waterpeil bij maatregelen tegen verdroging in elzenbroekbossenVakblad Natuurbeheer57577Google Scholar
  6. Caraco, N F, Cole, J J, Likens, G E 1989Evidence for sulphate-controlled phosphorus release from sediments of aquatic systemsNature341316318CrossRefGoogle Scholar
  7. Golez, N V, Kyuma, K 1997Influence of pyrite oxidation and soil acidification on some essential nutrientsAquacult. Engin.16107124Google Scholar
  8. Golterman, H L 1995The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France)Hydrobiology3153958Google Scholar
  9. Golterman, H L 1998The distribution of phosphate over iron-bound and calcium-bound phosphate in stratified sedimentsHydrobiology3647581Google Scholar
  10. Jensen, H S, Andersen, F Ø 1992Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakesLimnol. Oceanogr.37577589Google Scholar
  11. Kölle, W, Strebel, O, Böttcher, J 1985Formation of sulphate by microbial denitrification in a reducing aquiferWater Supply33340(Berlin B)Google Scholar
  12. Lamers, L P M, Tomassen, H B M, Roelofs, J G M 1998Sulfate-induced eutrophication and phytotoxicity in freshwater wetlandsEnviron. Sci. Technol.32199205CrossRefGoogle Scholar
  13. Lucassen E, Smolders A and Roelofs J 2000 De effecten van verhoogde sulfaatgehalten op grondwater gevoede ecosystemen. H2O 25/26, 28–31.Google Scholar
  14. Lucassen, E, Smolders, A J P, Roelofs, J G M 2002Potential sensitivity of mires to drought, acidification and mobilisation of heavy metals: the sediment S/(Ca+Mg) ratio as diagnostic toolEnviron. Pol.120635646Google Scholar
  15. Lucassen, E C H E T, Smolders, A J P, Salm, A L, Roelofs, J G M 2004aHigh groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlandsBiogeochemistry67249267CrossRefGoogle Scholar
  16. Lucassen, E C H E T, Smolders, A J P, Crommenacker, J, Roelofs, J G M 2004bEffects of stagnating sulphate-rich groundwater on the mobility of phosphate in freshwater wetlandsArch Hydrobiol.160117131CrossRefGoogle Scholar
  17. Lucassen, E C H E T, Smolders A J P, Roelofs J G M In press Effects of temporary desiccation on the mobility of phosphorus and metals in sulphur-rich fens: Differential responses of sediments and consequences for water table management. Wetl. Ecol. Manag. (in press).Google Scholar
  18. Murray, T E 1995The correlation between iron sulphide precipitation and hypolymnetic phosphorus accumulation during one summer in a soft water lakeCan. J. Fish. Aquat. Sci.5211901194Google Scholar
  19. Moore, P A,Jr, Reddy, K R 1994Role of Eh and pH on phosphorus geochemistry in sediments of lake Okeechobee, FloridaJ. Environ. Qual.23955964Google Scholar
  20. Nielsen, J L, Nielsen, P H 1998Microbial nitrate-dependent oxidation of ferrous iron in activated sludgeEnviron. Sci. Technol.3235563561CrossRefGoogle Scholar
  21. Nordstrom, D K 1982Aqueous pyrite oxidation and consequent formation of secondary iron minerals in acid sulphate weatheringSoil Sci. Soc. Am.103756Google Scholar
  22. Patrick, W H, Khalid, R A 1974Phosphate release and sorption by soils and sediments; effect of aerobic and anaerobic conditionsScience1865355Google Scholar
  23. Pauwels, H, Kloppmann, W, Foucher, J C, Martelat, A, Fritsche, V 1998Field tracer test for denitrification in a pyrite-bearing aquiferAppl. Geochem.13767778CrossRefGoogle Scholar
  24. Ripl, W 1976Biochemical oxidation of polluted lake sediment with nitrateAmbio5132135Google Scholar
  25. Roelofs, J G M 1991Inlet of alkaline river water into peaty lowlands: effects on water quality and Stratiotes aloides L. standsAquat. Bot.39267293CrossRefGoogle Scholar
  26. Smolders, A J P, Hendriks, R J J, Campschreur, H M, Roelofs, J G M 1997Nitrate induced iron deficiency chlorosis in Juncus acutiflorusPlant Soil1963745CrossRefGoogle Scholar
  27. Smolders, A J P, Nijboer, R C, Roelofs, J G M 1995Prevention of sulphide accumulation and phosphate mobilization by the addition of iron(II) chloride to a reduced sediment: an enclosure experimentFreshw. Biol.34559568Google Scholar
  28. Smolders, A J P, Roelofs, J G M 1993Sulphate mediated iron limitation and eutrophication in aquatic ecosystemsAquat. Bot.46247253CrossRefGoogle Scholar
  29. Sperber, J I 1958Release of phosphate from soil minerals by hydrogen sulphideNature181934PubMedGoogle Scholar
  30. Straub, K S, Benz, M, Schink, B, Widdel, F 1996Anaerobic, nitrate dependent microbial oxidation of ferrous ironAppl. Environ. Microbiol.6214581460Google Scholar
  31. Stumm, W, Morgan, J J 1981Aquatic chemistry, an introduction emphasizing chemical equilibria in natural waters2John Wiley and SonsNew York780Google Scholar
  32. Stortelder, A H F 1998Broekbossen: Bosecosystemen van NederlandKNNVUtrecht216Google Scholar
  33. Tesoriero, A J, Liebscher, H, Cox, S E 2000Mechanisms and rates of denitrification in an agricultural watershed: Electron and mass balance along ground water flow pathsWat. Res. Res.3615451559Google Scholar
  34. Uhlmann, D, Paul, L 1994Causes and effects of ‘nitrate saturation’ in phosphate-deficient water bodiesWat. Sci. Technol.30281288Google Scholar
  35. Van Steenwijk J m 1986. De chemie van het grondwater in het eerste watervoerend paket rond het pompstation Vierlingsbeek. KIWA, SWE 86.018Google Scholar
  36. Weber, K A, Picardal, F W, Roden, E E 2001Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compoundsEnviron. Sci. Technol.3516441650PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Esther C. H. E. T. Lucassen
    • 1
    Email author
  • Alfons J. P. Smolders
    • 1
  • Leon P. M. Lamers
    • 1
  • Jan G. M. Roelofs
    • 1
  1. 1.Environmental Biology, Department of EcologyRadboud University NijmegenED Nijmegenthe Netherlands

Personalised recommendations