Plant and Soil

, Volume 269, Issue 1–2, pp 233–243 | Cite as

Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere

  • Mesfin TesfayeEmail author
  • Matthew D. Denton
  • Deborah A. Samac
  • Carroll P. Vance


Transgenic plants containing a chimeric gene construct that facilitates the exudation of proteins from roots offer novel approaches for modification of the rhizosphere and production of relatively pure recombinant proteins. The aim of this study was to develop alfalfa (Medicago sativa L.) plants that exude a heterologous recombinant protein into the rhizosphere. Alfalfa transformed with a fungal endochitinase (ech42) cDNA fused in frame to the signal peptide of a white lupin acid phosphatase and under the control of the cassava vein mosaic virus (CsVMV) promoter expressed increased chitinase activity in vegetative organs and root exudates. Chitinase activity in root exudates of transgenic alfalfa was 7.5–25.7 times higher than in the untransformed Regen-SY plants. Chitinase enzyme activity was accompanied by increased synthesis of mRNA and protein in transformed plants. By comparison, untransformed and vector only transformed plants displayed no expression of recombinant protein and mRNA. A single band of the expected molecular weight was present only in western blots of root exudates of transgenic alfalfa plants. The secreted endochitinase enzyme not only retained its lytic activity against glycol chitin but also showed antifungal activity by inhibition of spore germination of two fungal pathogens. Exudation of recombinant proteins from roots may offer alternative uses for alfalfa in the production of value-added biopharmaceuticals and may influence microbes or modify soil nutrient availability near plant roots.


alfalfa endochitinase exudation lucerne Medicago sativa recombinant protein signal peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, S, Bingham, ET, Mathews, DE, Shahan, MN, Will, J., Burgess, RR 1995Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing α-amylase and manganese-dependent lignin peroxidaseEuphytica.85381393Google Scholar
  2. Bingham, ET. 1991Registration of alfalfa hybrid Regen-SY germplasm for tissue culture and transformationCrop Sci.311098Google Scholar
  3. Bolar, JP, Norelli, JL, Wong, KW, Hayes, CK, Harman, GE., Aldwincke, HS 2000Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigorPhytopathology.907277Google Scholar
  4. Borisjuk, NV, Broisjuk, LG, Logendra, S, Petersen, F, Gleba, Y., Raskin, I 1999Production of recombinant proteins in plant root exudatesNature Biotechnol.17466469Google Scholar
  5. Brants, A, Earle, ED. 2001Trangenic tobacco cell cultures expressing Trichoderma harzianum endochitinase gene release the enzyme into the mediumPlant Cell Rep.207378CrossRefGoogle Scholar
  6. Conrad, U., Fiedler, U. 1998Compartment-specific accumulation of recombinant immunoglobulins in plant cells, an essential tool for antibody production and immunomodulation of physiological functions and pathogen activityPlant Mol. Biol.38101109CrossRefPubMedGoogle Scholar
  7. De La, Cruz, Hidalgo-Gallego, A, Lora, JM, Benitez, T, Pintor-Toro, JA., Llobell, A. 1992Isolation and characterization of three chitinases from Trichoderma harzianumEur. J. Biochem.206859867Google Scholar
  8. Daniell, H, Streatfield, SJ., Wycoff, K 2001Medical molecular farming, production of antibodies, biopharmaceuticals and edible vaccines in plantsTrends Plant Sci.6219226PubMedGoogle Scholar
  9. Farran, I, Sanchez-Serrano, JJ, Medina, JF, Prieto, J., Mingo-Castel, AM 2002Targeted expression of human serum albumin to potato tubersTransgenic Res.11337346CrossRefPubMedGoogle Scholar
  10. Fischer, R, Schumann, D, Zimmermann, S, Drossard, J, Sack, M., Schillberg, S. 1999Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plantsEur. J. Biochem.262810816CrossRefPubMedGoogle Scholar
  11. Haran, S, Logendra, S, Seskar, M, Bratanova, M., Raskin, I 2000Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expressionPlant Physiol.124615626CrossRefPubMedGoogle Scholar
  12. Hayes, CK, Klemsdal, S, Lorito, M, Di Pietro, A, Peterbauer, C, Nakas, JP, Tronsmo, A., Harman, GE. 1994Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianumGene138143148CrossRefPubMedGoogle Scholar
  13. Kusnadi, AR, Nikolov, ZL., Howard, JA. 1997Production of recombinant proteins in transgenic plants, practical considerationsBiotechnol. Bioeng.56473484CrossRefGoogle Scholar
  14. Laemmli, UK 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685CrossRefPubMedGoogle Scholar
  15. Lorito, M, Woo, SL, Fernandez, IG, Colucci, G, Harman, GE, Pintor-Toro, JA, Filippone, E, Muccifora, S, Lawrence, CB, Zoina, A, Tuzun, S., Scala, F. 1998Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogenensProc. Natl. Acad. Sci. USA9578607865CrossRefPubMedGoogle Scholar
  16. Maniatis TA, Fritsch EF., Sambrook J. (1992). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  17. Marschner H and Römheld V 2001 Root-induced changes in the availability of micronutrients in the rhizosphere. In Plant Roots: The Hidden Half. Eds. Y Waise, A Eshel and U Kafkafi. pp. 557–581. Marcel Dekker, New York.Google Scholar
  18. Miller, SS, Liu, J, Allan, DA, Menzhuber, CJ, Fedorova, M., Vance, CP. 2001Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupinPlant Physiol.127594606CrossRefPubMedGoogle Scholar
  19. Mora, AA., Earle, ED 2001Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase geneMol. Breeding.819CrossRefGoogle Scholar
  20. Pozo, MJ, Azcon-Aguilar, C, Dumas-Gaudot, E., Barea, JM 1998Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasiticaJ. Exp. Botany4917291739CrossRefGoogle Scholar
  21. Samac D A, Dornbusch M, Tesfaye Mesfin, Purev S and Temple S J 2004 A comparison of constitutive promoters for expression of transgenes in alfalfa Medicago sativa. Transgenic Res. (in press).Google Scholar
  22. Saruul, P, Srienc, F, Somers, DA., Samac, DA 2002Production of a biodegradable plastic polymer, poly-ß-hydroxybutyrate, in transgenic alfalfaCrop Sci.42919927Google Scholar
  23. Stoger, E, Sack, M, Perrin, Y, Vaquero, C, Torres, E, Twyman, RM, Christou, P., Fischer, R. 2002Practical consideration for pharmaceutical antibody production in different crop systemsMol. Breeding9149158CrossRefGoogle Scholar
  24. Trudel, J., Asselin, A 1989Detection of chitinase activity after polyacrylamide gel electrophoresisAnal. Biochem.178362366CrossRefPubMedGoogle Scholar
  25. Uren NC 2001 Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In The Rhizosphere. Eds. R Pinton, Z Varanini and P Nannipieri. pp. 19–40. Marcel Dekker, New York.Google Scholar
  26. Verdaguer, B, Kochko, A, Beachy, RN., Fauquet, C. 1996Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoterPlant Mol. Biol.3111291139CrossRefPubMedGoogle Scholar
  27. Walker, TS, Bais, HP, Grotewold, E., Vivanco, JM. 2003Root exudation and rhizosphere biologyPlant Physiol.1324451CrossRefPubMedGoogle Scholar
  28. Whipps JM .(1990) Carbon economy. In The Rhizosphere. Ed. J M Lynch. pp. 59–99. John Wiley and Sons, Chichester.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Mesfin Tesfaye
    • 1
    Email author
  • Matthew D. Denton
    • 2
  • Deborah A. Samac
    • 1
    • 3
  • Carroll P. Vance
    • 1
    • 2
  1. 1.U.S. Department of Agriculture-Agricultural Research Service-Plant Science Research Unit and Departments ofU.S.A
  2. 2.Agronomy and Plant GeneticsU.S.A
  3. 3.Plant PathologyUniversity of MinnesotaU.S.A

Personalised recommendations