Advertisement

The dual-targeted RNA editing factor AEF1 is universally conserved among angiosperms and reveals only minor adaptations upon loss of its chloroplast or its mitochondrial target

  • Anke Hein
  • Sarah Brenner
  • Monika Polsakiewicz
  • Volker KnoopEmail author
Article
  • 57 Downloads

Abstract

Key message

Upon loss of either its chloroplast or mitochondrial target, a uniquely dual-targeted factor for C-to-U RNA editing in angiosperms reveals low evidence for improved molecular adaptation to its remaining target.

Abstract

RNA-binding pentatricopeptide repeat (PPR) proteins specifically recognize target sites for C-to-U RNA editing in the transcriptomes of plant chloroplasts and mitochondria. Among more than 80 PPR-type editing factors that have meantime been characterized, AEF1 (or MPR25) is a special case given its dual targeting to both organelles and addressing an essential mitochondrial (nad5eU1580SL) and an essential chloroplast (atpFeU92SL) RNA editing site in parallel in Arabidopsis. Here, we explored the angiosperm-wide conservation of AEF1 and its two organelle targets. Despite numerous independent losses of the chloroplast editing site by C-to-T conversion and at least four such conversions at the mitochondrial target site in other taxa, AEF1 remains consistently conserved in more than 120 sampled angiosperm genomes. Not a single case of simultaneous loss of the chloroplast and mitochondrial editing target or of AEF1 disintegration or loss could be identified, contrasting previous findings for editing factors targeted to only one organelle. Like in most RNA editing factors, the PPR array of AEF1 reveals potential for conceptually “improved fits” to its targets according to the current PPR-RNA binding code. Surprisingly, we observe only minor evidence for adaptation to the mitochondrial target also after deep losses of the chloroplast target among Asterales, Caryophyllales and Poales or, vice versa, for the remaining chloroplast target after a deep loss of the mitochondrial target among Malvales. The evolutionary observations support the notion that PPR-RNA mismatches may be essential for proper function of editing factors.

Keywords

Plant chloroplasts and mitochondria C-to-U RNA editing RNA-binding PPR proteins PPR-RNA recognition code Dual organelle targeting Angiosperm phylogeny 

Notes

Author contributions

AH did analysis of sequence data and conducted phylogenetic analysis, SB and MP did nucleic acid preparations, PCR amplifications and molecular cloning, VK designed and supervised the study and wrote the manuscript, AH and VK prepared figures and edited the final manuscript.

Supplementary material

11103_2019_940_MOESM1_ESM.docx (312 kb)
Electronic supplementary material 1 (DOCX 313 kb)
11103_2019_940_MOESM2_ESM.xlsx (37 kb)
Electronic supplementary material 2 (XLSX 38 kb)
11103_2019_940_MOESM3_ESM.fas (161 kb)
Electronic supplementary material 3 (FAS 161 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  2. Andrés-Colás N, Zhu Q, Takenaka M, De Rybel B, Weijers D, Van Der Straeten D (2017) Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids. Proc Natl Acad Sci USA 114:8883–8888.  https://doi.org/10.1073/pnas.1705815114 CrossRefPubMedGoogle Scholar
  3. Angiosperm Phylogeny Group IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20.  https://doi.org/10.1111/boj.12385 CrossRefGoogle Scholar
  4. Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910.  https://doi.org/10.1371/journal.pgen.1002910 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bentolila S, Heller WP, Sun T, Babina AM, Friso G, van Wijk KJ, Hanson MR (2012) RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci USA 109:E1453–E1661.  https://doi.org/10.1073/pnas.1121465109 CrossRefPubMedGoogle Scholar
  6. Boussardon C, Salone V, Avon A, Berthome R, Hammani K, Okuda K, Shikanai T, Small I, Lurin C (2012) Two interacting proteins are necessary for the editing of the ndhD-1 site in Arabidopsis plastids. Plant Cell 24:3684–3694CrossRefGoogle Scholar
  7. Boussardon C, Avon A, Kindgren P, Bond CS, Challenor M, Lurin C, Small I (2014) The cytidine deaminase signature HxE(x)nCxxC of DYW1 binds zinc and is necessary for RNA editing of ndhD-1. New Phytol 203:1090–1095.  https://doi.org/10.1111/nph.12928 CrossRefPubMedGoogle Scholar
  8. Carrie C, Small I (2013) A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochim Biophys Acta 1833:253–259.  https://doi.org/10.1016/J.BBAMCR.2012.05.029 CrossRefPubMedGoogle Scholar
  9. Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF, Bai F, Castleden I, Song Y, Song B, Huang J, Liu X, Xu X, Lim BL, Bond CS, Yiu S-M, Small I (2016) Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J 85:532–547.  https://doi.org/10.1111/tpj.13121 CrossRefPubMedGoogle Scholar
  10. Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K, Berthomé R, Lurin C (2013) Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol 10:1557–1575.  https://doi.org/10.4161/rna.26128 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Daniell H, Wurdack KJ, Kanagaraj A, Lee S-B, Saski C, Jansen RK (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116:723–737.  https://doi.org/10.1007/s00122-007-0706-y CrossRefPubMedPubMedCentralGoogle Scholar
  12. Diaz MF, Bentolila S, Hayes ML, Hanson MR, Mulligan RM (2017) A protein with an unusually short PPR domain, MEF8, affects editing at over 60 Arabidopsis mitochondrial C targets of RNA editing. Plant J 92:638–649.  https://doi.org/10.1111/tpj.13709 CrossRefPubMedGoogle Scholar
  13. Doyle JLJJ, Doyle JLJJ (1990) Isolation of plant DNA from fresh tissue. Focus (Madison) 12:13–15Google Scholar
  14. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. NatProtoc 2:953–971Google Scholar
  15. Geiss KT, Abbas GM, Makaroff CA (1994) Intron loss from the nadh dehydrogenase subunit 4 gene of lettuce mitochondrial DNA - evidence for homologous recombination of a cDNA intermediate. Mol Gen Genet 243:97–105CrossRefGoogle Scholar
  16. Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104CrossRefGoogle Scholar
  17. Grewe F, Zhu A, Mower JP (2016) Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium. Genome Biol Evol 8:3193–3201.  https://doi.org/10.1093/gbe/evw233 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guillaumot D, Lopez-Obando M, Baudry K, Avon A, Rigaill G, Falcon de Longevialle A, Broche B, Takenaka M, Berthomé R, De Jaeger G, Delannoy E, Lurin C (2017) Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proc Natl Acad Sci USA 114:8877–8882.  https://doi.org/10.1073/pnas.1705780114 CrossRefPubMedGoogle Scholar
  19. Gutmann B, Royan S, Small I (2017) Protein complexes implicated in RNA editing in plant organelles. Mol Plant 10:1255–1257.  https://doi.org/10.1016/J.MOLP.2017.09.011 CrossRefPubMedGoogle Scholar
  20. Hayes ML, Giang K, Mulligan RM (2012) Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures. BMC Evol Biol 12:66.  https://doi.org/10.1186/1471-2148-12-66 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hayes ML, Dang KN, Diaz MF, Mulligan RM (2015) A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity. J Biol Chem 290:10136–101342.  https://doi.org/10.1074/jbc.M114.631630 CrossRefPubMedPubMedCentralGoogle Scholar
  22. He S, Sun Y, Yang Q, Zhang X, Huang Q, Zhao P, Sun M, Liu J, Qian W, Qin G, Gu H, Qu LJ (2017) A novel imprinted gene NUWA controls mitochondrial function in early seed development in Arabidopsis. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1006553 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hein A, Knoop V (2018) Expected and unexpected evolution of plant RNA editing factors CLB19, CRR28 and RARE1: retention of CLB19 despite a phylogenetically deep loss of its two known editing targets in Poaceae. BMC Evol Biol 18:85.  https://doi.org/10.1186/s12862-018-1203-4 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hein A, Polsakiewicz M, Knoop V (2016) Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors. BMC Evol Biol 16:23.  https://doi.org/10.1186/s12862-016-0589-0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hein A, Brenner S, Knoop V (2019) Multifarious evolutionary pathways of a nuclear RNA editing factor: disjunctions in co-evolution of DOT4 and its chloroplast target rpoC1eU488SL. Genome Biol Evol 11:798–813.  https://doi.org/10.1093/gbe/evz032 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522.  https://doi.org/10.1093/molbev/msx281 CrossRefPubMedGoogle Scholar
  27. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587CrossRefGoogle Scholar
  28. Ichinose M, Sugita M (2016) RNA editing and its molecular mechanism in plant organelles. Genes (Basel) 8:5.  https://doi.org/10.3390/genes8010005 CrossRefGoogle Scholar
  29. Ichinose M, Tasaki E, Sugita C, Sugita M (2012) A PPR-DYW protein is required for splicing of a group II intron of cox1 pre-mRNA in Physcomitrella patens. Plant J Cell Mol Biol 70:271–278.  https://doi.org/10.1111/j.1365-313X.2011.04869.x CrossRefGoogle Scholar
  30. Iyer LM, Zhang D, Rogozin IB, Aravind L (2011) Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res 39:9473–9497.  https://doi.org/10.1093/nar/gkr691 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296PubMedPubMedCentralGoogle Scholar
  32. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589.  https://doi.org/10.1038/nmeth.4285 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Knoop V, Rüdinger M (2010) DYW-type PPR proteins in a heterolobosean protist: plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Lett 584:4287–4291.  https://doi.org/10.1016/j.febslet.2010.09.041 CrossRefPubMedGoogle Scholar
  34. Knoop V, Schuster W, Wissinger B, Brennicke A (1991) Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. EMBO J 10:3483–3493CrossRefGoogle Scholar
  35. Kobayashi T, Yagi Y, Nakamura T (2019) Comprehensive prediction of target RNA editing sites for PLS-class PPR proteins in Arabidopsis thaliana. Plant Cell Physiol 60:862–874.  https://doi.org/10.1093/pcp/pcy251 CrossRefPubMedGoogle Scholar
  36. Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330CrossRefGoogle Scholar
  37. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  38. Lenz H, Hein A, Knoop V (2018) Plant organelle RNA editing and its specificity factors: enhancements of analyses and new database features in PREPACT 30. BMC Bioinform 19:255.  https://doi.org/10.1186/s12859-018-2244-9 CrossRefGoogle Scholar
  39. Liao Z, Chen M, Guo L, Gong Y, Tang F, Sun X, Tang K (2004) Rapid isolation of high-quality total RNA from taxus and ginkgo. Prep Biochem Biotechnol 34:209–214.  https://doi.org/10.1081/PB-200026790 CrossRefPubMedGoogle Scholar
  40. Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette M-L, Mireau H, Peeters N, Renou J-P, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103.  https://doi.org/10.1105/tpc.104.022236 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7:135.  https://doi.org/10.1186/1471-2148-7-135 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Oldenkott B, Yang Y, Lesch E, Knoop V, Schallenberg-Rüdinger M (2019) Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli. Commun Biol 2:85.  https://doi.org/10.1038/s42003-019-0328-3 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255.  https://doi.org/10.1105/tpc.104.027516 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Park S, Grewe F, Zhu A, Ruhlman TA, Sabir J, Mower JP, Jansen RK (2015) Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytol 208:570–583.  https://doi.org/10.1111/nph.13467 CrossRefPubMedGoogle Scholar
  45. Ran JH, Gao H, Wang XQ (2010) Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol Phylogenet Evol 54:136–149CrossRefGoogle Scholar
  46. Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, DePamphilis CW, Knox EB, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473.  https://doi.org/10.1126/science.1246275 CrossRefPubMedGoogle Scholar
  47. Rüdinger M, Polsakiewicz M, Knoop V (2008) Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat (PPR) proteins in jungermanniid but not in marchantiid liverworts. Mol Biol Evol 25:1405–1414CrossRefGoogle Scholar
  48. Rüdinger M, Szövényi P, Rensing SASA, Knoop V (2011) Assigning DYW-type PPR proteins to RNA editing sites in the funariid mosses Physcomitrella patens and Funaria hygrometrica. Plant J 67:370–380.  https://doi.org/10.1111/j.1365-313X.2011.04600.x CrossRefPubMedGoogle Scholar
  49. Rüdinger M, Volkmar U, Lenz H, Groth-Malonek M, Knoop V (2012) Nuclear DYW-type PPR gene families diversify with increasing RNA editing frequencies in liverwort and moss mitochondria. J Mol Evol 74:37–51.  https://doi.org/10.1007/s00239-012-9486-3 CrossRefPubMedGoogle Scholar
  50. Ruwe H, Gutmann B, Schmitz-Linneweber C, Small I, Kindgren P, Schmitz-Linneweber C, Small I, Kindgren P (2019) The E domain of CRR2 participates in sequence-specific recognition of RNA in plastids. New Phytol 222:218–229.  https://doi.org/10.1111/nph.15578 CrossRefPubMedGoogle Scholar
  51. Salone V, Rüdinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138.  https://doi.org/10.1016/j.febslet.2007.07.075 CrossRefPubMedGoogle Scholar
  52. Schallenberg-Rüdinger M, Knoop V (2016) Coevolution of organelle RNA editing and nuclear specificity factors in early land plants. In: Rensing SA (ed) Genomes and evolution of charophytes, bryophytes and ferns. Advances in botanical research, vol 78. Elsevier, Amsterdam, pp 37–93CrossRefGoogle Scholar
  53. Schallenberg-Rüdinger M, Lenz H, Polsakiewicz M, Gott JM, Knoop V (2013) A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes. RNA Biol 10:1549–1556.  https://doi.org/10.4161/rna.25755 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sharma M, Bennewitz B, Klösgen RB (2018) Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts. Photosynth Res.  https://doi.org/10.1007/s11120-018-0543-7 CrossRefPubMedGoogle Scholar
  55. Shikanai T (2015) RNA editing in plants: machinery and flexibility of the site recognition. Biochim Biophys Acta 1874:779–785.  https://doi.org/10.1016/j.bbabio.2014.12.010 CrossRefGoogle Scholar
  56. Sloan DB, Barr CM, Olson MS, Keller SR, Taylor DR (2008) Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Mol Biol Evol 25:243–246CrossRefGoogle Scholar
  57. Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR (2010) Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 185:1369–1380.  https://doi.org/10.1534/genetics.110.118000 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241.  https://doi.org/10.1371/journal.pbio.1001241 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590CrossRefGoogle Scholar
  60. Sperschneider J, Catanzariti A-M, DeBoer K, Petre B, Gardiner DM, Singh KB, Dodds PN, Taylor JM (2017) LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 7:44598.  https://doi.org/10.1038/srep44598 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sun T, Bentolila S, Hanson MR (2016) The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci 21:926–973.  https://doi.org/10.1016/j.tplants.2016.07.005 CrossRefGoogle Scholar
  62. Takenaka M (2014) How complex are the editosomes in plant organelles? Mol Plant 7:582–585.  https://doi.org/10.1093/mp/sst170 CrossRefPubMedGoogle Scholar
  63. Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A (2012) Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci 109:5104–5109.  https://doi.org/10.1073/pnas.1202452109 CrossRefPubMedGoogle Scholar
  64. Takenaka M, Zehrmann A, Brennicke A, Graichen K (2013) Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PLoS ONE 8:e65343.  https://doi.org/10.1371/journal.pone.0065343 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Takenaka M, Jörg A, Burger M, Haag S (2019) RNA editing mutants as surrogates for mitochondrial SNP mutants. Plant Physiol Biochem 135:310–321.  https://doi.org/10.1016/J.PLAPHY.2018.12.014 CrossRefPubMedGoogle Scholar
  66. Till B, Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2001) CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA 7:1227–1238CrossRefGoogle Scholar
  67. Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K (2012) Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. Plant J 72:450–460.  https://doi.org/10.1111/j.1365-313X.2012.05091.x CrossRefPubMedGoogle Scholar
  68. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235.  https://doi.org/10.1093/nar/gkw256 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xu L, Carrie C, Law SR, Murcha MW, Whelan J (2013) Acquisition, conservation, and loss of dual-targeted proteins in land plants. Plant Physiol 161:644–662.  https://doi.org/10.1104/pp.112.210997 CrossRefPubMedGoogle Scholar
  70. Yagi Y, Hayashi S, Kobayashi K, Hirayama T, Nakamura T (2013) Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS ONE 8:e57286CrossRefGoogle Scholar
  71. Yan J, Yao Y, Hong S, Yang Y, Shen C, Zhang Q, Zhang D, Zou T, Yin P (2019) Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucleic Acids Res 47:3728–3738.  https://doi.org/10.1093/nar/gkz075 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yap A, Kindgren P, Colas des Francs-Small C, Kazama T, Tanz SK, Toriyama K, Small I (2015) AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5 and also promotes atpF splicing in Arabidopsis and rice. Plant J 81:661–669.  https://doi.org/10.1111/tpj.12756 CrossRefPubMedGoogle Scholar
  73. Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567.  https://doi.org/10.1105/tpc.108.064535 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zumkeller SM, Knoop V, Knie N (2016) Convergent evolution of fern-specific mitochondrial group II intron atp1i361g2 and its ancient source paralogue rps3i249g2 and independent losses of intron and RNA editing among Pteridaceae. Genome Biol Evol 8:2505–2519.  https://doi.org/10.1093/gbe/evw173 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare EvolutionUniversität BonnBonnGermany

Personalised recommendations