Advertisement

Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis

  • Tianqi Lyu
  • Weimiao Liu
  • Ziwei Hu
  • Xun Xiang
  • Tingting Liu
  • Xingpeng Xiong
  • Jiashu CaoEmail author
Article

Abstract

Key message

Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation.

Abstract

Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.

Keywords

Cys2/His2 zinc-finger proteins Brassica rapa Molecular features Expression profiles Flower development 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31772311) and the Grand Science and Technology Special Project of Zhejiang Province (Grant No. 2016C02051-6-1).

Author contributions

TL designed all the experiments and wrote this paper. WL, ZH, XX, TL, and XX took part in this work and the manuscript modification. JC is the corresponding author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2019_935_MOESM1_ESM.docx (15 kb)
Electronic supplementary material 1 (DOCX 15 kb)
11103_2019_935_MOESM2_ESM.docx (7.1 mb)
Electronic supplementary material 6 (DOCX 7319 kb)
11103_2019_935_MOESM3_ESM.xlsx (12 kb)
Electronic supplementary material 7 (XLSX 12 kb)
11103_2019_935_MOESM4_ESM.docx (17 kb)
Electronic supplementary material 8 (DOCX 17 kb)
11103_2019_935_MOESM5_ESM.xls (98 kb)
Electronic supplementary material 9 (XLS 98 kb)
11103_2019_935_MOESM6_ESM.xls (92 kb)
Electronic supplementary material 10 (XLS 92 kb)
11103_2019_935_MOESM7_ESM.xls (39 kb)
Electronic supplementary material 11 (XLS 39 kb)
11103_2019_935_MOESM8_ESM.xls (312 kb)
Electronic supplementary material 12 (XLS 312 kb)
11103_2019_935_MOESM9_ESM.xls (60 kb)
Electronic supplementary material 13 (XLS 60 kb)
11103_2019_935_MOESM10_ESM.xls (44 kb)
Electronic supplementary material 2 (XLS 44 kb)
11103_2019_935_MOESM11_ESM.xls (25 kb)
Electronic supplementary material 3 (XLS 25 kb)
11103_2019_935_MOESM12_ESM.xlsx (14.5 mb)
Electronic supplementary material 4 (XLSX 14873 kb)
11103_2019_935_MOESM13_ESM.xls (38 kb)
Electronic supplementary material 5 (XLS 38 kb)

References

  1. Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi A (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485.  https://doi.org/10.1007/s11103-007-9199-y CrossRefPubMedGoogle Scholar
  2. Alam I, Batool K, Cui DL, Yang YQ, Lu YH (2019) Comprehensive genomic survey, structural classification and expression analysis of C2H2 zinc finger protein gene family in Brassica rapa L. PLoS ONE 14:e0216071.  https://doi.org/10.1371/journal.pone.0216071 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bao Z, Zhang N, Hua J (2014) Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat Commun 5:5628.  https://doi.org/10.1038/ncomms6628 CrossRefPubMedGoogle Scholar
  4. Böhm S, Frishman D, Mewes HW (1997) Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25:2464–2469.  https://doi.org/10.1093/nar/25.12.2464 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M, Kumar S, Sari U, Esparzafranco MA, Sakamoto W, Rozwadowski K (2014) An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26:2098–2113.  https://doi.org/10.1105/tpc.114.124743 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cai C, Wang X, Liu B, Wu J, Liang J, Cui Y, Cheng F, Wang X (2017) Brassica rapa genome 2.0: a reference upgrade through sequence re-assembly and gene re-annotation. Mol Plant 10:649–651.  https://doi.org/10.1016/j.molp.2016.11.008 CrossRefGoogle Scholar
  7. Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438.  https://doi.org/10.1104/pp.111.186999 CrossRefPubMedGoogle Scholar
  8. Cheng F, Mandáková T, Wu J, Xie Q, Martin AL, Wang X (2013) Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 25:1541–1554.  https://doi.org/10.1105/tpc.113.110486 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I (2011) The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23:289–303.  https://doi.org/10.1105/tpc.110.075911 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Crevillén P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, Cao X, Dean C (2014) Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515:587–590.  https://doi.org/10.1038/nature13722 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cui X, Lu F, Qiu Q, Zhou B, Gu L, Zhang S, Kang Y, Cui X, Ma X, Yao Q (2016) REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat Genet 48:694–699.  https://doi.org/10.1038/ng.3556 CrossRefPubMedGoogle Scholar
  12. Dinneny JR, Weigel D, Yanofsky MF (2006) NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development 133:1645–1655.  https://doi.org/10.1242/dev.02335 CrossRefPubMedGoogle Scholar
  13. Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom 5:39.  https://doi.org/10.1186/1471-2164-5-39 CrossRefGoogle Scholar
  14. Gómez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438.  https://doi.org/10.1242/dev.01600 CrossRefPubMedGoogle Scholar
  15. He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754.  https://doi.org/10.1126/science.1091109 CrossRefPubMedGoogle Scholar
  16. Hiratsu K, Ohta M, Matsui K, Ohme-Takagi M (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. Febs Lett 514:351–354.  https://doi.org/10.1016/s0014-5793(02)02435-3 CrossRefPubMedGoogle Scholar
  17. Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 321:172–178.  https://doi.org/10.1016/j.bbrc.2004.06.115 CrossRefPubMedGoogle Scholar
  18. Huang L, Ye WZ, Liu TT, Cao JS (2009) Characterization of the male-sterile line Bcajh97-01A/B and identification of candidate genes for genic male sterility in Chinese cabbage-pak-choi. Oncol Rep 134:632–640.  https://doi.org/10.3892/or.2015.3926 CrossRefGoogle Scholar
  19. Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, Conn V, Conn SJ, Carles CC, Parcy F, Zubieta C (2018) Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res 46:4966–4977.  https://doi.org/10.1093/nar/gky205 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hulo N, Bairoch A, Bulliard V, Cerutti L, Castro ED, Langendijkgenevaux PS, Pagni M, Sigrist CJA (2006) The PROSITE database. Nucleic Acids Res 34:227–230.  https://doi.org/10.1093/nar/gkj063 CrossRefGoogle Scholar
  21. Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J (2013) Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome 56:39–48.  https://doi.org/10.1139/gen-2012-0088 CrossRefPubMedGoogle Scholar
  22. Kam J, Gresshoff PM, Shorter R, Xue GP (2008) The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Mol Biol 67:305–322.  https://doi.org/10.1007/s11103-008-9319-3 CrossRefPubMedGoogle Scholar
  23. Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14:2353e2367.  https://doi.org/10.1105/tpc.003061 CrossRefGoogle Scholar
  24. Kapoor S, Takatsuji H (2006) Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia. Plant Mol Biol 61:415e430.  https://doi.org/10.1007/s11103-006-0020-0 CrossRefGoogle Scholar
  25. Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V (2007) C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 303:259–269.  https://doi.org/10.1016/j.ydbio.2006.11.012 CrossRefPubMedGoogle Scholar
  26. Krizek BA, Lewis MW, Fletcher JC (2006) RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J 45:369–383.  https://doi.org/10.1111/j.1365-313X.2005.02633.x CrossRefPubMedGoogle Scholar
  27. Kubo KI, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Takatsuji H (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res 26:608–615.  https://doi.org/10.1093/nar/26.2.608 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lawrence SD, Novak NG (2018) Comparative analysis of the genetic variability within the Q-type C2H2 zinc-finger transcription factors in the economically important cabbage, canola and Chinese cabbage genomes. Hereditas 155:29.  https://doi.org/10.1186/s41065-018-0065-5 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327.  https://doi.org/10.1093/nar/30.1.325 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:302–305.  https://doi.org/10.1093/nar/gkr931 CrossRefGoogle Scholar
  31. Li C, Gu L, Gao L, Chen C, Wei CQ, Qiu Q, Chien CW, Wang S, Jiang L, Ai LF (2016a) Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48:687–693.  https://doi.org/10.1038/ng.3555 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li J, Wang Y, Zhang Y, Wang W, Irish VF, Huang T (2016b) RABBIT EARS regulates the transcription of TCP4 during petal development in Arabidopsis. J Exp Bot 67:6473–6480.  https://doi.org/10.1093/jxb/erw419 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li Z, Ou Y, Zhang Z, Li J, He Y (2018) Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis. Mol Plant 11:1135–1146.  https://doi.org/10.1016/j.molp.2018.06.007 CrossRefPubMedGoogle Scholar
  34. Lin S, Dong H, Zhang F, Qiu L, Wang F, Cao J, Huang L (2014) BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot 113:777–788.  https://doi.org/10.1093/aob/mct315 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu K, Linder CR, Warnow T (2011) RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS ONE 6:e27731.  https://doi.org/10.1371/journal.pone.0027731 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu Q, Wang Z, Xu X, Zhang H, Li C (2015) Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). PLoS ONE 10:e0134753.  https://doi.org/10.1371/journal.pone.0134753 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lyu T, Cao J (2018) Cys2/His2 zinc-finger proteins in transcriptional regulation of flower development. Int J Mol Sci 19:2589.  https://doi.org/10.3390/ijms19092589 CrossRefPubMedCentralGoogle Scholar
  38. Lyu T, Hu Z, Liu W, Cao J (2019) Arabidopsis Cys2/His2 zinc-finger protein MAZ1 is essential for intine formation and exine pattern. Biochem Biophys Res Commun 518:299–305. doi: https://doi.org/10.1016/j.bbrc.2019.08.050 CrossRefPubMedGoogle Scholar
  39. Moreau F, Thévenon E, Blanvillain R, Lopezvidriero I, Francozorrilla JM, Dumas R, Parcy F, Morel P, Trehin C, Carles CC (2016) The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Development 143:1108–1119.  https://doi.org/10.1242/dev.127365 CrossRefPubMedGoogle Scholar
  40. Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, Prasad M (2014) C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Func Integr Genomics 14:531–543.  https://doi.org/10.1007/s10142-014-0383-2 CrossRefGoogle Scholar
  41. Noh B, Lee SH, Kim HG, Shin EA, Lee M, Jung KJ, Doyle MR (2004) Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16:2601–2613.  https://doi.org/10.1105/tpc.104.025353 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968.  https://doi.org/10.1105/tpc.010127 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Payne T, Susan DJ, Anna MK (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737–3749.  https://doi.org/10.1242/dev.01216 CrossRefPubMedGoogle Scholar
  44. Persikov AV, Wetzel JL, Rowland EF, Oakes BL, Xu DJ, Singh M, Noyes MB (2015) A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res 43:1965–1984.  https://doi.org/10.1093/nar/gku1395 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prunet N, Yang W, Das P, Meyerowitz EM, Jack TP (2017) SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proc Natl Acad Sci USA 114:7166.  https://doi.org/10.1073/pnas.1705977114 CrossRefPubMedGoogle Scholar
  46. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120.  https://doi.org/10.1093/nar/gki442 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112.  https://doi.org/10.1242/dev.043067 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504.  https://doi.org/10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sharma N, Xin R, Kim DH, Sung S, Lange T, Huq E (2016) NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day in Arabidopsis. Development 143:682–690.  https://doi.org/10.1242/dev.128595 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shen XP, Xu LA, Liu YH, Dong H, Zhou D, Zhang YZ, Lin S, Cao JS, Huang L (2019) Comparative transcriptome analysis and ChIP-sequencing reveals stage-specific gene expression and regulation profiles associated with pollen wall formation in Brassica rapa. BMC Genom 20:264.  https://doi.org/10.1186/s12864-019-5637-x CrossRefGoogle Scholar
  51. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767.  https://doi.org/10.1105/tpc.2.8.755 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sun B, Looi LS, Guo S, He Z, Gan ES, Huang J, Xu Y, Wee WY (2014) Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343:1248559.  https://doi.org/10.1126/science.1248559 CrossRefPubMedGoogle Scholar
  53. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810.  https://doi.org/10.1101/gad.9.14.1797 CrossRefPubMedGoogle Scholar
  54. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568.  https://doi.org/10.1093/nar/gkq973 CrossRefPubMedGoogle Scholar
  55. Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54:582–596.  https://doi.org/10.1007/s000180050186 CrossRefPubMedGoogle Scholar
  56. Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078.  https://doi.org/10.1023/a:1006184519697 CrossRefPubMedGoogle Scholar
  57. Takatsuji H, Mori M, Benfey PN, Ren L, Chua NH (1992) Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. EMBO J 11:241–249.  https://doi.org/10.1002/j.1460-2075.1992.tb05047.x CrossRefPubMedPubMedCentralGoogle Scholar
  58. Takeda S, Matsumoto N, Okada K (2004) RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131:425–434.  https://doi.org/10.1242/dev.00938 CrossRefPubMedGoogle Scholar
  59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evolut 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  60. Tian H, Tackmann NR, Jin A, Zheng J, Zhang Y (2017) Inactivation of the MDM2 RING domain enhances p53 transcriptional activity in mice. J Biol Chem 292:21614–21622.  https://doi.org/10.1074/jbc.RA117.000122 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tong C, Wang X, Yu J, Wu J, Liu S (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom 14:689.  https://doi.org/10.1186/1471-2164-14-689 CrossRefGoogle Scholar
  62. Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409:832.  https://doi.org/10.1038/35057011 CrossRefPubMedGoogle Scholar
  63. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039.  https://doi.org/10.1038/ng.919 CrossRefGoogle Scholar
  64. Wei K, Si P, Yang L (2016) Functional characterization of maize C2H2 zinc-finger gene family. Plant Mol Biol Rep 34:761–776.  https://doi.org/10.1007/s11105-015-0958-7 CrossRefGoogle Scholar
  65. Weingartner M, Subert C, Sauer N (2011) LATE, a C(2)H(2) zinc-finger protein that acts as floral repressor. Plant J 68:681–692.  https://doi.org/10.1111/j.1365-313X.2011.04717.x CrossRefPubMedGoogle Scholar
  66. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools on the ExPASy server. Methods Mol Biol 112:531–552.  https://doi.org/10.1385/1-59259-890-0:571 CrossRefPubMedGoogle Scholar
  67. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Ann Rev Biophys Biomol Struct 29:183–212.  https://doi.org/10.1146/annurev.biophys.29.1.183 CrossRefGoogle Scholar
  68. Xiong X, Liu W, Jiang J, Xu L, Huang L, Cao J (2019) Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Mol Genet Genom.  https://doi.org/10.1007/s00438-019-01564-w CrossRefGoogle Scholar
  69. Xu Y, Prunet N, Gan ES, Wang Y, Stewart D, Wellmer F, Huang J, Yamaguchi N, Tatsumi Y, Kojima M (2018) SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J 37:e97499.  https://doi.org/10.15252/embj.201797499 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang H, Howard M, Dean C (2016a) Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC. Proc Natl Acad Sci USA 113:9369–9374.  https://doi.org/10.1073/pnas.1605733113 CrossRefPubMedGoogle Scholar
  71. Yang M, Chao J, Wang D, Hu J, Hua W, Gong D, Liu G (2016b) Genome-wide identification and expression profiling of the C2H2-type zinc finger protein transcription factor family in tobacco. Hereditas 38:337–349.  https://doi.org/10.16288/j.yczz.15-440 CrossRefPubMedGoogle Scholar
  72. Yu X, Cao J, Ye W, Wang Y (2004) Construction of an antisense CYP86MF gene plasmid vector and production of a male-sterile Chinese cabbage transformant by the pollen-tube method. J Pomol Hort Sci 79:833–839. https://doi.org/0.1080/14620316.2004.11511851Google Scholar
  73. Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105:7618–7623.  https://doi.org/10.1073/pnas.0802254105 CrossRefPubMedGoogle Scholar
  74. Yuan S, Li X, Li R, Wang L, Zhang C, Chen L, Hao Q, Zhang X, Chen H, Shan Z (2018) Genome-wide identification and classification of soybean C2H2 zinc finger proteins and their expression analysis in legume-rhizobium symbiosis. Front Microbiol 9:126.  https://doi.org/10.3389/fmicb.2018.00126 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Cell and Molecular Biology, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Horticultural Plant Growth, Development and Quality ImprovementMinistry of AgricultureHangzhouChina
  3. 3.Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhouChina

Personalised recommendations