Advertisement

A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice

  • Qiao Qin
  • Yinxiao Wang
  • Liyu Huang
  • Fengping Du
  • Xiuqin Zhao
  • Zhikang Li
  • Wensheng WangEmail author
  • Binying FuEmail author
Article

Key message

OsPUB67, a U-box E3 ubiquitin ligase, may interact with two drought tolerance negative regulators (OsRZFP34 and OsDIS1) and improve drought tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure.

Abstract

E3 ubiquitin ligases are major components of the ubiquitination cascade and contribute to the biotic and abiotic stress response in plants. In the present study, we show that a rice drought responsive gene, OsPUB67, encoding the U-box E3 ubiquitin ligase was significantly induced by drought, salt, cold, JA, and ABA, and was expressed in nuclei, cytoplasm, and membrane systems. This distribution of expression suggests a significant role for OsPUB67 in a wide range of biological processes and abiotic stress response. Over-expression of OsPUB67 improved drought stress tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. Bimolecular fluorescence complementation assays revealed that a few E2s interacted with OsPUB67 with unique functional implications in different cell components. Further evidence showed that several E3 ubiquitin ligases interacted with OsPUB67, especially OsRZFP34 and OsDIS1, which are negative regulators of drought tolerance. This interaction on the stomata implied OsPUB67 might function as a heterodimeric ubiquitination complex in response to drought stress. Comprehensive transcriptome analysis revealed OsPUB67 participated in regulating genes involved in the abiotic stress response and transcriptional regulation in an ABA-dependent manner. Our findings revealed OsPUB67 mediated a multilayered complex drought stress tolerance mechanism.

Keywords

Rice Drought tolerance U-box ubiquitin ligase ABA Stomata 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31571631 and 31501291), the CAAS Innovative Team Award to WSW and BYF, and National High-level personnel of special support program to WSW.

Author contributions

QQ performed the physiological analysis, subcellular localization assay and helped revised manuscript; YXW and LYH performed the vector construction and genetic transformation; FPD and XQZ performed RNA-seq analysis; ZKL discussed and revised this manuscript; WSW and BYF designed the experiments, wrote and revised this manuscript. All authors have participated in this research and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

11103_2019_933_MOESM1_ESM.pptx (396 kb)
Supplementary material 1—Fig. S1. Phenotypes of the OsPUB67 over-expressing (A) and CRISPR/Cas9 mutant (B) transgenic lines under drought conditions at the seedling stage. A: 7 days after drought stress; B: 5 days after drought stress (PPTX 395 kb)
11103_2019_933_MOESM2_ESM.pptx (627 kb)
Supplementary material 2—Fig. S2. Basic information of the OsPUB67 over-expressing and CRISPR/Cas9 mutant transgenic plants in response to drought stress. A: The relative expression of the OsPUB67 over-expression lines and WT. B: Generation of the Ospub67-M1 mutant by CRISPR/Cas9. CRISPR/Cas9-mediated double-nucleotide deletion in the OsPUB67 target sequence led to a truncated OsPUB67 protein at the U-box domain. C and D: Phenotypes of OsPUB67 OE3, WT, and M1 plants under control and drought stress conditions. E: The survival rates of the OsPUB67 OE3, WT, and M1 plants (PPTX 626 kb)
11103_2019_933_MOESM3_ESM.xlsx (22 kb)
Supplementary material 3—Supplementary Table 1 (XLSX 21 kb)
11103_2019_933_MOESM4_ESM.xlsx (23 kb)
Supplementary material 4—Supplementary Table 2 (XLSX 22 kb)
11103_2019_933_MOESM5_ESM.xlsx (15 kb)
Supplementary material 5—Supplementary Table 3 (XLSX 15 kb)

References

  1. Andersen PL, Zhou H, Pastushok L, Moraes T, McKenna S, Ziola B, Ellison MJ, Dixit VM, Xiao W (2005) Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J Cell Biol 17:745–755CrossRefGoogle Scholar
  2. Aravind L, Koonin AEV (2000) The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol 10:R132–R134PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bae H, Kim WT (2013) The N-terminal tetra-peptide (IPDE) short extension of the U-box motif in rice SPL11 E3 is essential for the interaction with E2 and ubiquitin-ligase activity. Biochem Biophys Res Commun 433:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bae H, Kim WT (2014) Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem Biophys Res Commun 444:575–580PubMedCrossRefPubMedCentralGoogle Scholar
  5. Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK (2006) Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J 25:2465–2474PubMedPubMedCentralCrossRefGoogle Scholar
  6. Byun MY, Cui LH, Oh TK, Jung YJ, Lee A, Park KY, Kang BG, Kim WT (2017) Homologous U-box E3 ubiquitin ligases OsPUB2 and OsPUB3 are involved in the positive regulation of low temperature stress response in rice (Oryza sativa L.). Front Plant Sci 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chen ZQ, Kong L, Zhou Y, Chen ZJ, Tian DG, Lin Y, Wang F, Chen SB (2016) Endosperm-specific OsPYL8 and OsPYL9 act as positive regulators of the ABA signaling pathway in rice seed germination. Funct Plant Biol 44:635–645CrossRefGoogle Scholar
  9. Christensen DE, Klevit RE (2009) Dynamic interactions of proteins in complex networks: identifying the complete set of interacting E2 s for functional investigation of E3-dependent protein ubiquitination. FEBS J 276:5381–5389PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dash PK, Rai R, Rai V, Pasupalak S (2018) Drought induced signaling in rice: delineating canonical and non-canonical pathways. Front Chem 6:264PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ding S, Zhang B, Qin F (2015) Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. Plant Cell 27:3228–3244PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156PubMedCrossRefGoogle Scholar
  13. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. Biochem Biophys Res Commun 276:33111–33120Google Scholar
  14. He F, Wang HL, Li HG, Su Y, Li S, Yang Y, Feng CH, Yin W, Xia X (2018) PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J 16:1514–1528PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hsu KH, Liu CC, Wu SJ, Kuo YY, Lu CA, Wu CR, Lian PJ, Hong CY, Ke YT, Huang JH, Yeh CH (2014) Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol Biol 86:125–137PubMedCrossRefGoogle Scholar
  16. Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y (2013) The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet 9:e1003391PubMedPubMedCentralCrossRefGoogle Scholar
  17. Huang XY, Chao DY, Gao JP, Zhu MZ, Min S, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817PubMedPubMedCentralCrossRefGoogle Scholar
  18. Huang L, Wang Y, Wang W, Zhao X, Qin Q, Sun F, Hu F, Zhao Y, Li Z, Fu B, Li Z (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 9:94PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hur YJ, Yi YB, Lee JH, Chung YS, Jung HW, Yun DJ, Kim KM, Park DS, Kim DH (2012) Molecular cloning and characterization of OsUPS, a U-box containing E3 ligase gene that respond to phosphate starvation in rice (Oryza sativa). Mol Biol Rep 39:5883–5888PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K, Tsuge S, Kojima C, Kawasaki T (2014) Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat Commun 5:5430PubMedCrossRefPubMedCentralGoogle Scholar
  21. Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lee GW, Lee S, Chung MS, Jeong YS, Chung BY (2015) Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma 252:997–1007PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D (2011) In planta function of compatible solute transporters of the AtProT family. J Exp Bot 62(2):787–796PubMedCrossRefPubMedCentralGoogle Scholar
  25. Leshem Y, Seri L, Levine A (2007) Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51:185–197PubMedCrossRefPubMedCentralGoogle Scholar
  26. Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, Misra S, Deng L, Chen ZJ, Li XX (2011) Act1, a novel U-box E3 ubiquitin ligase for IL-17R-mediated signaling. Sci Signal 2:a63Google Scholar
  27. Liu J, Park CH, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang GL (2015) The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog 11:e1004629PubMedPubMedCentralCrossRefGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedPubMedCentralCrossRefGoogle Scholar
  29. Luo J, Shen G, Yan J, He C, Zhang H (2006) AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J 46:649–657PubMedCrossRefGoogle Scholar
  30. Luo Q, Li Y, Wang W, Fei X, Deng X (2015) Genome-wide survey and expression analysis of chlamydomonas reinhardtii U-box E3 ubiquitin ligases (CrPUBs) reveal a functional lipid metabolism module. PLoS ONE 10:e122600Google Scholar
  31. Moon J, Parry G, Estelle M (2004) The Ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205PubMedCrossRefPubMedCentralGoogle Scholar
  33. Mundy J, Chua NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2279–2286PubMedPubMedCentralCrossRefGoogle Scholar
  34. Murata Y, Mori IC, Munemasa S (2015) Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66:369–392PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242255CrossRefGoogle Scholar
  36. Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329PubMedCrossRefPubMedCentralGoogle Scholar
  37. Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J 65:194–205PubMedCrossRefPubMedCentralGoogle Scholar
  38. Sakamoto T, Kitano H, Fujioka S (2013) An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice. Plant Signal Behav 8:e27117PubMedPubMedCentralCrossRefGoogle Scholar
  39. Serrano I, Campos L, Rivas S (2018) Roles of E3 ubiquitin-ligases in nuclear protein homeostasis during plant stress responses. Front Plant Sci 9:139PubMedPubMedCentralCrossRefGoogle Scholar
  40. Smita S, Katiyar A, Chinnusamy V, Pandey DM, Bansal KC (2015) Transcriptional regulatory network analysis of MYB transcription factor family genes in Rice. Front Plant Sci 6:1157PubMedPubMedCentralCrossRefGoogle Scholar
  41. Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818PubMedPubMedCentralCrossRefGoogle Scholar
  43. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84PubMedPubMedCentralCrossRefGoogle Scholar
  44. Turek I, Tischer N, Lassig R, Trujillo M (2018) Multi-tiered pairing selectivity between E2 ubiquitin-conjugating enzymes and E3 ligases. J Biol Chem 293:16324–16336PubMedPubMedCentralCrossRefGoogle Scholar
  45. Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP (2013) SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. J Exp Bot 64:3237–3247PubMedPubMedCentralCrossRefGoogle Scholar
  46. Vega-Sánchez ME, Zeng L, Chen S, Leung H, Wang GL (2008) SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 20:1456PubMedPubMedCentralCrossRefGoogle Scholar
  47. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Bio 10:385CrossRefGoogle Scholar
  48. Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438PubMedCrossRefGoogle Scholar
  49. Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J Plant Physiol 164(6):695–701PubMedCrossRefPubMedCentralGoogle Scholar
  50. Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genom 12:149CrossRefGoogle Scholar
  51. Wang J, Qu B, Dou S, Li L, Yin D, Pang Z, Zhou Z, Tian M, Liu G, Xie Q, Tang D, Chen X, Zhu L (2015) The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC Plant Biol 15:1–15CrossRefGoogle Scholar
  52. Wang W, Qin Q, Sun F, Wang Y, Xu D, Li Z, Fu B (2016) Genome-wide differences in DNA methylation changes in two contrasting rice genotypes in response to drought conditions. Front Plant Sci 7:1675PubMedPubMedCentralGoogle Scholar
  53. Wang N, Xing Y, Lou Q, Feng P, Liu S, Zhu M, Yin W, Fang S, Lin Y, Zhang T, Sang X, He G (2017) Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice. J Plant Physiol 209:84–94PubMedCrossRefGoogle Scholar
  54. Wu F, Sheng P, Tan J, Chen X, Lu G, Ma W, Heng Y, Lin Q, Zhu S, Wang J, Guo X, Zhang X, Lei C, Wan J (2015) Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. J Exp Bot 66:271–281PubMedCrossRefGoogle Scholar
  55. Wywial E, Singh SM (2010) Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol 10:157PubMedPubMedCentralGoogle Scholar
  56. Xia K, Ou X, Gao C, Tang H, Jia Y, Deng R, Xu R, Zhang M (2015) OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant Cell Environ 38:2662–2673PubMedCrossRefGoogle Scholar
  57. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46PubMedCrossRefGoogle Scholar
  58. Xiao S, Shao M, Wang D, Li W, Liu F (2016) Identification and evolution of FYVE domain-containing proteins and their expression patterns in response to abiotic stresses in rice. Plant Mol Biol Rep 34:1064–1082CrossRefGoogle Scholar
  59. Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:861–869PubMedPubMedCentralCrossRefGoogle Scholar
  60. Yu J, Lai Y, Wu X, Wu G, Guo C (2016) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478:703–709PubMedCrossRefPubMedCentralGoogle Scholar
  61. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808PubMedPubMedCentralCrossRefGoogle Scholar
  62. Zeng LR, Park CH, Venu RC, Gough J, Wang GL (2008) Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1:800–815PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600PubMedPubMedCentralGoogle Scholar
  64. Zhiguo E, Zhang Y, Li T, Wang L, Zhao H (2015) Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments. PLoS ONE 10:e0122621CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qiao Qin
    • 1
  • Yinxiao Wang
    • 1
  • Liyu Huang
    • 1
    • 2
  • Fengping Du
    • 1
  • Xiuqin Zhao
    • 1
  • Zhikang Li
    • 1
    • 3
  • Wensheng Wang
    • 1
    • 3
    Email author
  • Binying Fu
    • 1
    Email author
  1. 1.Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementChinese Academy of Agricultural SciencesBeijingChina
  2. 2.School of AgricultureYunnan UniversityYunnanChina
  3. 3.College of Agronomy, Anhui Agricultural UniversityHefeiChina

Personalised recommendations