Advertisement

Elucidating genomic patterns and recombination events in plant cybrid mitochondria

  • Laura E. GarciaEmail author
  • Mikhajlo K. Zubko
  • Elena I. Zubko
  • M. Virginia Sanchez-Puerta
Article
  • 45 Downloads

Abstract

Key message

Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions.

Abstract

The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.

Keywords

Mitochondrial DNA Cybrid DNA recombination BIR Protoplast fusion 

Notes

Acknowledgements

This work was supported by Universidad Nacional de Cuyo (Sectyp M033), Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT1762) to M.V.S.P and by NSF (Grant No. 1062432) to Indiana University, which supports the computer cluster.

Author contributions

MVSP and LEG designed the study and analyzed the data. MZ and EZ produced the repeated cybrid and performed the DNA extraction for sequencing. MVSP, LEG, MZ and EZ wrote the manuscript.

Supplementary material

11103_2019_869_MOESM1_ESM.pdf (538 kb)
Supplementary material 1 (PDF 537 kb)
11103_2019_869_MOESM2_ESM.xls (14 kb)
Supplementary material 2 (XLS 13 kb)

References

  1. Akagi H, Shimada H, Fujimura T (1995) High-frequency inter-parental recombination between mitochondrial genomes of rice cybrids. Curr Genet 29:58–65CrossRefPubMedGoogle Scholar
  2. Aleza P, Garcia-Lor A, Juárez J, Navarro L (2016) Recovery of citrus cybrid plants with diverse mitochondrial and chloroplastic genome combinations by protoplast fusion followed by in vitro shoot, root, or embryo micrografting. Plant Cell Tissue Organ Cult 126:205–217CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Anand RP, Lovett ST, Haber JE (2013) Break-induced DNA replication. Cold Spring Harb Perspect Biol 5:a010397CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arimura SI, Yanase S, Tsutsumi N, Koizuka N (2018) The mitochondrial genome of an asymmetrically cell-fused rapeseed, Brassica napus, containing a radish-derived cytoplasmic male sterility-associated gene. Genes Genet Syst 93:143–148CrossRefPubMedGoogle Scholar
  6. Arrieta-Montiel MP, Mackenzie SA (2011) Plant mitochondrial genomes and recombination. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 65–82CrossRefGoogle Scholar
  7. Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268CrossRefPubMedPubMedCentralGoogle Scholar
  8. Austin S, Lojkowska E, Ehlenfeldt MK, Kelman A, Helgeson JP (1988) Fertile interspecific somatic hybrids of Solanum: a novel source of resistance to Erwinia soft rot. Phytopathology 78:1216–1220CrossRefGoogle Scholar
  9. Aviv D, Bleichman S, Arzee-Gonen P, Galun E (1984) Intersectional cytoplasmic hybrids in Nicotiana: identification of plastomes and chondriomes in N. sylvestris + N. rustica cybrids having N. sylvestris nuclear genomes. Theor Appl Genet 67:499–504CrossRefPubMedGoogle Scholar
  10. Backert S, Börner T (2000) Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.). Curr Genet 37:304–314CrossRefPubMedGoogle Scholar
  11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477CrossRefPubMedPubMedCentralGoogle Scholar
  12. Belliard G, Vedel F, Pelletier G (1979) Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion. Nature 281:401–403CrossRefGoogle Scholar
  13. Bennardo N, Cheng A, Huang N, Stark JM (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4:e1000110CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13:R56CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579CrossRefPubMedGoogle Scholar
  16. Bonhomme S, Budar F, Lancelin D, Small I, Defrance MC, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348CrossRefPubMedGoogle Scholar
  17. Brown CR, Yang CP, Mojtahedi H, Santo GS, Masuelli R (1996) RFLP analysis of resistance to Columbia root-knot nematode derived from Solanum bulbocastanum in a BC2 population. Theor Appl Genet 92:572–576CrossRefPubMedGoogle Scholar
  18. Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA 69:2292–2294CrossRefPubMedGoogle Scholar
  19. Carlsson J, Leino M, Sohlberg J, Sundström JF, Glimelius K (2008) Mitochondrial regulation of flower development. Mitochondrion 8:74–86CrossRefPubMedGoogle Scholar
  20. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506CrossRefPubMedGoogle Scholar
  21. Charlesworth D (2017) Origins of rice cytoplasmic male sterility genes. Cell Res 27:3–4CrossRefPubMedGoogle Scholar
  22. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90CrossRefPubMedGoogle Scholar
  23. Chase CD, Gabay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Springer, Dordrecht, pp 593–621CrossRefGoogle Scholar
  24. Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606CrossRefPubMedGoogle Scholar
  25. Chou J-Y, Leu J-Y (2015) The red queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front Genet 6:187CrossRefPubMedPubMedCentralGoogle Scholar
  26. Davila JI, Arrieta-Montiel MP, Wamboldt Y, Cao J, Hagmann J, Shedge V, Xu Y-Z, Weigel D, Mackenzie SA (2011) Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol 9:64CrossRefPubMedPubMedCentralGoogle Scholar
  27. de Zamaroczy M, Faugeron-Fonty G, Bernardi G (1983) Excision sequences in the mitochondrial genome of yeast. Gene 21:193–202CrossRefPubMedGoogle Scholar
  28. Deem A, Barker K, VanHulle K, Downing B, Vayl A, Malkova A (2008) Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179:1845–1860CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mole Biol Rep 1:19–21CrossRefGoogle Scholar
  30. Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18CrossRefPubMedGoogle Scholar
  31. Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180CrossRefPubMedGoogle Scholar
  32. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–38CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fitter JT, Thomas MR, Niu C, Rose RJ (2005) Investigation of Nicotiana tabacum (+) N. suaveolens cybrids with carpelloid stamens. J Plant Physiol 162:225–235CrossRefPubMedGoogle Scholar
  34. Gleba YY, Sytnik KM (1984) Protoplast fusion—genetic engineering in higher plants. Springer, Berlin, IllusX + p 220Google Scholar
  35. Gordon D, Green P (2013) Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937CrossRefPubMedPubMedCentralGoogle Scholar
  36. Greiner S, Bock R (2013) Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 35:354–365CrossRefPubMedGoogle Scholar
  37. Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252CrossRefPubMedGoogle Scholar
  38. Gurdon C, Svab Z, Feng Y, Kumar D, Maliga P (2016) Cell-to-cell movement of mitochondria in plants. Proc Natl Acad Sci USA 113:3395–3400CrossRefPubMedGoogle Scholar
  39. Haber JE, Hearn M (1985) Rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics 111:7–22PubMedPubMedCentralGoogle Scholar
  40. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–169CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hua SB, Qiu M, Chan E, Zhu L, Luo Y (1997) Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 38:91–96CrossRefPubMedGoogle Scholar
  43. Ilcheva V, San LH, Dimitrov B, Zagorska N (2000) Morphological and cytological characteristics of somatic hybrids of Nicotiana tabacum L. (+) N. megalosiphon Heurk. et Müll. Vitro Cell Dev Biol Plant 36:69–73CrossRefGoogle Scholar
  44. Iovene M, Savarese S, Cardi T, Frusciante L, Scotti N, Simon PW, Carputo D (2007) Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. Genome 50:443–450CrossRefPubMedGoogle Scholar
  45. Izhar S, Zelcer A (1986) Protoplast fusion and generation of cybrids for transfer of cytoplasmic male sterility. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic Press, New York, pp 589–599Google Scholar
  46. Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2:1007–1012CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kim DH, Kim BD (2006) The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr Genet 49:59–67CrossRefPubMedGoogle Scholar
  48. Kofer W, Glimelius K, Bonnett HT (1991) Modifications of mitochondrial DNA cause changes in floral development in homeotic-like mutants of tobacco. Plant Cell 3:759–769CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kubo T, Mikami T (2007) Organization and variation of angiosperm mitochondrial genome. Physiol Plantarum 129:6–13CrossRefGoogle Scholar
  50. Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14CrossRefPubMedGoogle Scholar
  51. Kühn, K., and Gualberto, J.M. (2012). Recombination in the stability, repair and evolution of the mitochondrial genome. In: Advances in botanical research, vol 63, pp 215–252Google Scholar
  52. Kushnir SG, Shlumukov LR, Pogrebnyak NJ, Berger S, Gleba Y (1987) Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome. Mol Gen Genet 209:159–163CrossRefPubMedGoogle Scholar
  53. Leino M, Landgren M, Glimelius K (2005) Alloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcripts of Arabidopsis orfs in cytoplasmic male-sterile Brassica napus. Plant J 42:469–480CrossRefPubMedGoogle Scholar
  54. Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116CrossRefPubMedGoogle Scholar
  55. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ling F, Makishima F, Morishima N, Shibata T (1995) A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J 14:4090–4101CrossRefPubMedPubMedCentralGoogle Scholar
  57. Liu J, Xu X, Deng X (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult 82:19–44CrossRefGoogle Scholar
  58. Llorente B, Smith CE, Symington LS (2008) Break-induced replication: what is it and what is it for? Cell Cycle 7:859–864CrossRefPubMedGoogle Scholar
  59. Logan DC (2006) The mitochondrial compartment. J Exp Bot 57:1225–1243CrossRefPubMedGoogle Scholar
  60. Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274CrossRefPubMedGoogle Scholar
  61. Lovett ST, Hurley RL, Sutera VA Jr, Aubuchon RH, Lebedeva MA (2002) Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics 160(3):851–859PubMedPubMedCentralGoogle Scholar
  62. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–57CrossRefPubMedPubMedCentralGoogle Scholar
  63. Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 93:7131–7136CrossRefPubMedGoogle Scholar
  64. Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE (2005) RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25:933–944CrossRefPubMedPubMedCentralGoogle Scholar
  65. Maréchal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186(2):299–317CrossRefPubMedGoogle Scholar
  66. McGrath JM, Williams CE, Haberlach GT, Wielgus SM, Uchytil TF, Helgeson JP (2002) Introgression and stabilization of Erwinia tuber soft rot resistance into potato after somatic hybridization of Solanum tuberosum and S. brevidens. Am J Potato Res 79:19–24CrossRefGoogle Scholar
  67. Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6:a016428CrossRefPubMedPubMedCentralGoogle Scholar
  68. Miller-Messmer M, Kuhn K, Bichara M, Le Ret M, Imbault P, Gualberto JM (2012) RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome. Plant Physiol 159:211–226CrossRefPubMedPubMedCentralGoogle Scholar
  69. Morgan A, Maliga P (1987) Rapid chloroplast segregation and recombination of mitochondrial DNA in Brassica cybrids. Mol Gen Genet 209:240–246CrossRefPubMedGoogle Scholar
  70. Nagy F, Lázár G, Menczel L, Maliga P (1983) A heteroplasmic state induced by protoplast fusion is a necessary condition for detecting rearrangements in Nicotiana mitochondrial DNA. Theor Appl Genet 66:203–207CrossRefPubMedGoogle Scholar
  71. Okazaki M, Kazama T, Murata H, Motomura K, Toriyama K (2013) Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility- associated candidate gene derived from Oriza rufipogon. Plant Cell Physiol 54:1560–1568CrossRefPubMedGoogle Scholar
  72. Orczyk W, Przetakiewicz J, Nadolska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum—application to genetics and breeding. Plant Cell Tissue Organ Cult 74:1–13CrossRefGoogle Scholar
  73. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97CrossRefPubMedGoogle Scholar
  74. Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404PubMedPubMedCentralGoogle Scholar
  75. Pineau B, Mathieu C, Gérard-Hirne C, De Paepe R, Chétrit P (2005) Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 280:25994–26001CrossRefPubMedGoogle Scholar
  76. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553CrossRefPubMedGoogle Scholar
  77. Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653CrossRefPubMedGoogle Scholar
  78. Resnick MA (1976) The repair of double-strand breaks in DNA: a model involving recombination. J Theor Biol 59:97–106CrossRefPubMedGoogle Scholar
  79. Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW et al (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473CrossRefPubMedGoogle Scholar
  80. Rothenberg M, Hanson MR (1988) A functional mitochondrial ATP synthase proteolipid gene produced by recombination of parental genes in a petunia somatic hybrid. Genetics 118:155–161PubMedPubMedCentralGoogle Scholar
  81. Sabar M, De Paepe R, de Kouchkovsky Y (2000) Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1249CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sakofsky CJ, Ayyar S, Malkova A (2012) Break-induced replication and genome stability. Biomolecules 2:483–504CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sanchez-Puerta MV, Zubko MK, Palmer JD (2015) Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. New Phytol 206:381–396CrossRefPubMedGoogle Scholar
  85. Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180CrossRefGoogle Scholar
  86. Scotti N, Maréchal-Drouard L, Cardi T (2004) The rpl5-rps14 mitochondrial region: a hot spot for DNA rearrangements in Solanum spp. somatic hybrids. Curr Genet 45:378–382CrossRefPubMedGoogle Scholar
  87. Shedge V, Davila J, Arrieta-Montiel MP, Mohammed S, Mackenzie SA (2010) Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiol 152:1960–1970CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457PubMedPubMedCentralGoogle Scholar
  89. Skippington E, Barkman TJ, Rice DW, Palmer JD (2015) Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci USA 112:E3515–E3524CrossRefPubMedGoogle Scholar
  90. Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241CrossRefPubMedPubMedCentralGoogle Scholar
  91. Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76CrossRefPubMedGoogle Scholar
  92. Smith DR, Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci USA 112:10177–10184CrossRefPubMedGoogle Scholar
  93. Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20:5300–5309CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615CrossRefPubMedGoogle Scholar
  95. Sun Y, Zhang X, Nie Y, Guo X (2005) Production of fertile somatic hybrids of Gossypium hirsutum + G. bickii and G. hirsutum + G. stockii via protoplast fusion. Plant Cell Tissue Organ Cult 83:303–310CrossRefGoogle Scholar
  96. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35CrossRefPubMedGoogle Scholar
  97. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123CrossRefPubMedGoogle Scholar
  98. Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19:166–171CrossRefPubMedGoogle Scholar
  99. Vedel F, Chétrit P, Mathieu C, Pelletier G, Primard C (1986) Several different mitochondrial DNA regions are involved in intergenomic recombination in Brassica napus cybrid plants. Curr Genet 11:17–24CrossRefGoogle Scholar
  100. Warren RL, Sutton GG, Jones SJM, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23:500–501CrossRefPubMedGoogle Scholar
  101. Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874CrossRefPubMedGoogle Scholar
  103. Xi Z, Wang Y, Bradley RK, Sugumaran M, Marx CJ, Rest JS, Davis CC (2013) Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet 9:e1003265CrossRefPubMedPubMedCentralGoogle Scholar
  104. Xiang F, Xia G, Zhi D, Wang J, Nie H, Chen H (2004) Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica. Genome 47:680–688CrossRefPubMedGoogle Scholar
  105. Zaegel V, Guermann B, Le Ret M, Andres C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548–3563CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zubko MK, Zubko EI, Patskovsky YV, Khvedynich OA, Fisahn J, Gleba YY, Schieder O (1996) Novel “homeotic” CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Bot 47:1101–1110CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias AgrariasIBAM, Universidad Nacional de Cuyo, CONICETChacras de CoriaArgentina
  2. 2.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Centre for Bioscience, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK

Personalised recommendations