Plant Molecular Biology

, Volume 99, Issue 6, pp 621–638 | Cite as

The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis

  • Lucila Garcia
  • Natanael Mansilla
  • Natacha Ocampos
  • María A. Pagani
  • Elina Welchen
  • Daniel H. GonzalezEmail author


Key message

The mitochondrial metallochaperone COX19 influences iron and copper responses highlighting a role of mitochondria in modulating metal homeostasis in Arabidopsis.


The mitochondrial copper chaperone COX19 participates in the biogenesis of cytochrome c oxidase (COX) in yeast and humans. In this work, we studied the function of COX19 in Arabidopsis thaliana, using plants with either decreased or increased COX19 levels. A fusion of COX19 to the red fluorescent protein localized to mitochondria in vivo, suggesting that Arabidopsis COX19 is a mitochondrial protein. Silencing of COX19 using an artificial miRNA did not cause changes in COX activity levels or respiration in plants grown under standard conditions. These amiCOX19 plants, however, showed decreased expression of the low-copper responsive miRNA gene MIR398b and an induction of the miR398 target CSD1 relative to wild-type plants. Plants with increased COX19 levels, instead, showed induction of MIR398b and other low-copper responsive genes. In addition, global transcriptional changes in rosettes of amiCOX19 plants resembled those observed under iron deficiency. Phenotypic analysis indicated that the roots of amiCOX19 plants show altered growth responses to copper excess and iron deficiency. COX activity levels and COX-dependent respiration were lower in amiCOX19 plants than in wild-type plants under iron deficiency conditions, suggesting that COX19 function is particularly important for COX assembly under iron deficiency. The results indicate that the mitochondrial copper chaperone COX19 has a role in regulating copper and iron homeostasis and responses in plants.


Arabidopsis thaliana Copper homeostasis COX19 Cytochrome c oxidase Iron homeostasis Mitochondria 



Artificial miRNA


Alternative oxidase


Bathocuproine disulphonate


Blue native


Confocal laser scanning microscopy


Cytochrome c oxidase


Green fluorescent protein


Modified red fluorescent protein


Murashige and Skoog


Salicyl-hydroxamic acid


Superoxide dismutase


Voltage dependent anion channel



This work was supported by Grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina); and Universidad Nacional del Litoral (UNL, Argentina). EW, MAP and DHG are members of CONICET. LG and NM are fellows of the same Institution. NO was an undergraduate fellow of UNL. We thank Javier Palatnik for sending us the MIR398b reporter line and the pNB47 vector, Agustín Arce for help with microarray analysis, Iris Steinebrunner for help with CLSM, María Rosa Marano for the use of laboratory space, reagents and equipment during the work of LG in Rosario, and Pablo Manavella for the labeled miRNA probes.

Author contributions

DHG, EW and LG conceived and designed the experiments; LG, NM and NO performed the experiments and analyzed the data; MAP performed the ICP-MS determination of metal content; DHG wrote the paper; EW and LG contributed with the writing of the paper; all authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11103_2019_840_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3044 KB)
11103_2019_840_MOESM2_ESM.xls (30 kb)
Supplementary material 2 (XLS 30 KB)
11103_2019_840_MOESM3_ESM.xlsx (104 kb)
Supplementary material 3 (XLSX 103 KB)
11103_2019_840_MOESM4_ESM.xlsx (34 kb)
Supplementary material 4 (XLSX 33 KB)
11103_2019_840_MOESM5_ESM.xls (28 kb)
Supplementary material 5 (XLS 28 KB)
11103_2019_840_MOESM6_ESM.xlsx (12 kb)
Supplementary material 6 (XLSX 11 KB)


  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945CrossRefGoogle Scholar
  2. Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR et al (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236CrossRefGoogle Scholar
  3. Attallah CV, Welchen E, Gonzalez DH (2007a) The promoters of Arabidopsis thaliana genes AtCOX17-1 and—2, encoding a copper chaperone involved in cytochrome c oxidase biogenesis, are preferentially active in roots and anthers and induced by biotic and abiotic stress. Physiol Plant 1290:123–134CrossRefGoogle Scholar
  4. Attallah CV, Welchen E, Pujol C, Bonnard G, Gonzalez DH (2007b) Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. Plant Mol Biol 65:343–355CrossRefGoogle Scholar
  5. Attallah CV, Welchen E, Martin AP, Spinelli SV, Bonnard G, Palatnik JF, Gonzalez DH (2011) Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. J Exp Bot 62:4281–4294CrossRefGoogle Scholar
  6. Aznar A, Chen NW, Rigault M, Riache N, Joseph D, Desmaële D et al (2014) Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol 164:2167–2183CrossRefGoogle Scholar
  7. Beauclair L, Yu A, Bouché N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–462CrossRefGoogle Scholar
  8. Bode M, Woellhaf MW, Bohnert M, van der Laan M, Sommer F, Jung M et al (2015) Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase. Mol Biol Cell 26:2385–2401CrossRefGoogle Scholar
  9. Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20:124–133CrossRefGoogle Scholar
  10. Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816CrossRefGoogle Scholar
  11. Castaings L, Caquot A, Loubet S, Curie C (2016) The high-affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision. Sci Rep 6:37222CrossRefGoogle Scholar
  12. Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590CrossRefGoogle Scholar
  13. Chen Y, Barak P (1982) Iron nutrition of plants in calcareous soils. Adv Agron 35:217–240CrossRefGoogle Scholar
  14. Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta 1757:730–741CrossRefGoogle Scholar
  15. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefGoogle Scholar
  16. Cobine PA, Pierrel F, Winge DR (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 1763:759–772CrossRefGoogle Scholar
  17. Colombatti F, Gonzalez DH, Welchen E (2014) Plant mitochondria under pathogen attack: a sigh of relief or a last breath? Mitochondrion 19:238–244CrossRefGoogle Scholar
  18. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357CrossRefGoogle Scholar
  19. Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110CrossRefGoogle Scholar
  20. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17CrossRefGoogle Scholar
  21. Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17:379–387CrossRefGoogle Scholar
  22. Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 67:403–417CrossRefGoogle Scholar
  23. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629CrossRefGoogle Scholar
  24. Fourcroy P, Tissot N, Gaymard F, Briat JF, Dubos C (2016) Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe(2+) transport system. Mol Plant 9:485–488CrossRefGoogle Scholar
  25. Garcia L, Welchen E, Gonzalez DH (2014) Mitochondria and copper homeostasis in plants Mitochondrion 19: 269–274Google Scholar
  26. Garcia L, Welchen E, Gey U, Arce AL, Steinebrunner I, Gonzalez DH (2016) The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. Plant Cell Environ 39:628–644CrossRefGoogle Scholar
  27. García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61:3885–3899CrossRefGoogle Scholar
  28. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefGoogle Scholar
  29. Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179CrossRefGoogle Scholar
  30. Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176:709–714CrossRefGoogle Scholar
  31. Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP et al (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiol 152:500–515CrossRefGoogle Scholar
  32. Khalimonchuk O, Winge DR (2008) Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. Biochim Biophys Acta 1783:618–628CrossRefGoogle Scholar
  33. Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC et al (2017) Iron-nicotianamine transporters are required for proper long distance iron signaling. Plant Physiol 175:1254–1268CrossRefGoogle Scholar
  34. Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J et al (2007) The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 5:9–20CrossRefGoogle Scholar
  35. Leary SC, Winge DR, Cobine PA (2009) “Pulling the plug” on cellular copper: the role of mitochondria in copper export. Biochim Biophys Acta 1793:146–153CrossRefGoogle Scholar
  36. Leary SC, Cobine PA, Nishimura T, Verdijk RM, de Krijger R, de Coo R et al (2013) COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux. Mol Biol Cell 24:683–691CrossRefGoogle Scholar
  37. Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682CrossRefGoogle Scholar
  38. Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E et al (2011) Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23:1815–1829CrossRefGoogle Scholar
  39. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2011) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236CrossRefGoogle Scholar
  40. Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M et al (2009) Systematic analysis of the twin Cx9C protein family. J Mol Biol 393:356–368CrossRefGoogle Scholar
  41. Mai HJ, Pateyron S, Bauer P (2016) Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. BMC Plant Biol 16:211CrossRefGoogle Scholar
  42. Mansilla N, Garcia L, Gonzalez DH, Welchen E (2015) AtCOX10, a protein involved in haem o synthesis during cytochrome c oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. J Exp Bot 66:6761–6775CrossRefGoogle Scholar
  43. Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E (2018) The complexity of mitochondrial Complex IV: an update of cytochrome c oxidase biogenesis in plants. Int J Mol Sci 19:662CrossRefGoogle Scholar
  44. Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594CrossRefGoogle Scholar
  45. Meyer EH, Millar AH (2008) Isolation of mitochondria from plant cell culture. Methods Mol Biol 425:163–169CrossRefGoogle Scholar
  46. Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64:637–663CrossRefGoogle Scholar
  47. Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190CrossRefGoogle Scholar
  48. Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K et al (2007) Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71:2095–2100CrossRefGoogle Scholar
  49. Naranjo-Arcos MA, Maurer F, Meiser J, Pateyron S, Fink-Straube C, Bauer P (2017) Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein. Sci Rep 7:10911CrossRefGoogle Scholar
  50. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136CrossRefGoogle Scholar
  51. Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I et al (2013) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25:3450–3471CrossRefGoogle Scholar
  52. Nobrega MP, Bandeira SC, Beers J, Tzagoloff A (2002) Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase. J Biol Chem 277:40206–40211CrossRefGoogle Scholar
  53. O’Connell J (2002) The basics of RT-PCR some practical considerations. Methods Mol Biol 193:19–25Google Scholar
  54. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690CrossRefGoogle Scholar
  55. Pilon M (2017) The copper microRNAs. New Phytol 213:1030–1035CrossRefGoogle Scholar
  56. Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290CrossRefGoogle Scholar
  57. Radin I, Mansilla N, Rödel G, Steinebrunner I (2015) The Arabidopsis COX11 homolog is essential for cytochrome c oxidase activity. Front Plant Sci 6:1091CrossRefGoogle Scholar
  58. Rigby K, Zhang L, Cobine PA, George GN, Winge DR (2007) Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J Biol Chem 282:10233–10242CrossRefGoogle Scholar
  59. Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W (2013) The transcriptional response of Arabidopsis leaves to Fe deficiency. Front Plant Sci 4:276CrossRefGoogle Scholar
  60. Rodríguez-Celma J, Lattanzio G, Villarroya D, Gutierrez-Carbonell E, Ceballos-Laita L, Rencoret J et al (2016) Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. J Proteomics 140:1–12CrossRefGoogle Scholar
  61. Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587CrossRefGoogle Scholar
  62. Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355CrossRefGoogle Scholar
  63. Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084CrossRefGoogle Scholar
  64. Schuler M, Keller A, Backes C, Philippar K, Lenhof HP, Bauer P (2011) Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana. BMC Plant Biol 11:87CrossRefGoogle Scholar
  65. Selinski J, Hartmann A, Deckers-Hebestreit G, Day DA, Whelan J, Scheibe R (2018) Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates. Plant Physiol 176:1423–1432CrossRefGoogle Scholar
  66. Silver JD, Ritchie ME, Smyth GK (2009) Microarray background correction: maximum likelihood estimation for the normal-exponential convolution. Biostatistics 10:352–363CrossRefGoogle Scholar
  67. Song Y, Zhou L, Yang S, Wang C, Zhang T, Wang J (2017) Dose-dependent sensitivity of Arabidopsis thaliana seedling root to copper is regulated by auxin homeostasis. Environ Exp Bot 139:23–30CrossRefGoogle Scholar
  68. Steinebrunner I, Gey U, Andres M, Garcia L, Gonzalez DH (2014) Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response. Front Plant Sci 5:87CrossRefGoogle Scholar
  69. Strodtkötter I, Padmasree K, Dinakar C, Speth B, Niazi PS, Wojtera J et al (2009) Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A. Mol Plant 2:284–297CrossRefGoogle Scholar
  70. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065CrossRefGoogle Scholar
  71. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203CrossRefGoogle Scholar
  72. Tan YF, O’Toole N, Taylor NL, Millar AH (2010) Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152:747–761CrossRefGoogle Scholar
  73. Team R (2013) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. http://www.r-projectorg/
  74. Timón-Gómez A, Nývltová E, Abriata LA, Vila AJ, Hosler J, Barrientos A (2018) Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol 76:163–178CrossRefGoogle Scholar
  75. Tomassi AH, Gagliardi D, Cambiagno DA, Manavella PA (2017) Nonradioactive detection of small RNAs using digoxigenin-labeled probes. Methods Mol Biol 1640:199–210CrossRefGoogle Scholar
  76. Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847CrossRefGoogle Scholar
  77. Vanlerberghe GC, Robson CA, Yip JY (2002) Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol 129:1829–1842CrossRefGoogle Scholar
  78. Vigani G, Briat JF (2016) Impairment of respiratory chain under nutrient deficiency in plants: does it play a role in the regulation of iron and sulfur responsive genes? Front Plant Sci 6:1185CrossRefGoogle Scholar
  79. Vigani G, Maffi D, Zocchi G (2009) Iron availability affects the function of mitochondria in cucumber roots. New Phytol 182:127–136CrossRefGoogle Scholar
  80. Vigani G, Bohic S, Faoro F, Vekemans B, Vincze L, Terzano R (2018) Cellular fractionation and nanoscopic X-ray fluorescence imaging analyses reveal changes of zinc distribution in leaf cells of iron-deficient plants. Front Plant Sci 9:1112CrossRefGoogle Scholar
  81. Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63:5903–5918CrossRefGoogle Scholar
  82. Wittig I, Braun HP, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428CrossRefGoogle Scholar
  83. Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378CrossRefGoogle Scholar
  84. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai Y (2009) SQUAMOSA Promoter Binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361CrossRefGoogle Scholar
  85. Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Lucila Garcia
    • 1
    • 2
  • Natanael Mansilla
    • 1
  • Natacha Ocampos
    • 1
  • María A. Pagani
    • 3
  • Elina Welchen
    • 1
  • Daniel H. Gonzalez
    • 1
    Email author
  1. 1.Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa FeUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET)RosarioArgentina
  3. 3.Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET)Universidad Nacional de RosarioRosarioArgentina

Personalised recommendations