Plant Molecular Biology

, Volume 98, Issue 6, pp 565–578 | Cite as

Transcription factors involved in basal immunity in mammals and plants interact with the same MAMP-responsive cis-sequence from Arabidopsis thaliana

  • Konstantin Kanofsky
  • Claudia Janina Strauch
  • Alexander Sandmann
  • Anika Möller
  • Reinhard HehlEmail author


Key message

WRKY and NF-κB transcription factors, involved in innate immunity in plants and mammals, interact with the same cis-sequence.


Novel microbe-associated molecular pattern (MAMP)-responsive cis-sequences, designated type II WT-boxes, are required for flg22-responsive gene expression in Arabidopsis thaliana protoplasts. While type I WT-boxes like TGACTTTT and CGACTTTT interact with WRKY transcription factors (TFs), the question remained which TFs bind to the type II WT-boxes GGACTTTC, GGACTTTT, and GGACTTTG. Surprisingly, a bioinformatic analysis predicts mouse (Mus musculus) NF-κB p65 as a TF interacting with type II WT-boxes. NF-κB p65, like WRKY factors in plants, plays a role in innate immunity in mammals. Therefore, the interaction of NF-κB p65 with type II WT-boxes was tested experimentally. NF-κB p65 requires the WT-boxes GGACTTTC, GGACTTTT, and GGACTTTG for activating reporter gene expression in plant cells. NF-κB p65 directly binds to WT-box containing synthetic promoters in vitro and requires the WT-box for binding. Earlier studies indicate that the sequence GGACTTTC is also required for WRKY26 mediated reporter gene activation. Here it is shown that WRKY26, like NF-κB p65, binds to the sequence GGACTTTC. Consistent with other recent studies, type II WT boxes are WRKY binding sites and the distinction between type I and type II no longer applies.


Bioinformatics Gel shift experiments Innate immunity Transient expression WT-box 



We would like to thank Elke Faurie for excellent technical assistance, and Norbert Käufer for critical reading of the manuscript. We are grateful to Christopher Eickhorst and Kazuhiko Namikawa for the gift of mouse mRNA and to Imre Somssich for helpful advice regarding WRKY26 electrophoretic mobility shift assays. This work was supported by the Federal Ministry of Education and Research, Germany (Hochschulpakt 2020).

Author contributions

RH conceived the idea. KK, CJS, AS, AM perfomed the experiments and analysed the data. RH and KK wrote the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983CrossRefPubMedGoogle Scholar
  3. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979CrossRefPubMedGoogle Scholar
  4. Babu MM, Iyer LM, Balaji S, Aravind L (2006) The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34:6505–6520CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bülow L, Schindler M, Hehl R (2007) PathoPlant: a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res 35:D841–D845CrossRefPubMedGoogle Scholar
  6. Chatel G, Montiel G, Pre M, Memelink J, Thiersault M, Saint-Pierre B, Doireau P, Gantet P (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J Exp Bot 54:2587–2588CrossRefPubMedGoogle Scholar
  7. Che D, Jensen S, Cai L, Liu JS (2005) BEST: binding-site estimation suite of tools. Bioinformatics 21:2909–2911CrossRefPubMedGoogle Scholar
  8. Chen YQ, Ghosh S, Ghosh G (1998) A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nat Struct Biol 5:67–73CrossRefPubMedGoogle Scholar
  9. Contreras-Moreira B (2010) 3D-footprint: a database for the structural analysis of protein-DNA complexes. Nucleic Acids Res 38:D91–D97CrossRefPubMedGoogle Scholar
  10. Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE: a modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Res 16:771–781CrossRefPubMedGoogle Scholar
  11. Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dubos C, Kelemen Z, Sebastian A, Bülow L, Huep G, Xu W, Grain D, Salsac F, Brousse C, Lepiniec L, Weisshaar B, Contreras-Moreira B, Hehl R (2014) Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC Genomics 15:317CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, Sarris PF (2016) Pathogen perception by NLRs in plants and animals: parallel worlds. BioEssays 38:769–781CrossRefPubMedGoogle Scholar
  14. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206CrossRefPubMedGoogle Scholar
  15. Fraiture M, Brunner F (2014) Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria. Front Microbiol 5:320CrossRefPubMedPubMedCentralGoogle Scholar
  16. Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111:2367–2372CrossRefPubMedGoogle Scholar
  17. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684CrossRefPubMedGoogle Scholar
  18. Gnanaprakasam JN, Wang R (2017) MYC in regulating immunity: metabolism and beyond. Genes (Basel) 8:88CrossRefGoogle Scholar
  19. Graef IA, Gastier JM, Francke U, Crabtree GR (2001) Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proc Natl Acad Sci USA 98:5740–5745CrossRefPubMedGoogle Scholar
  20. Haney CH, Urbach J, Ausubel FM (2014) Innate immunity in plants and animals. Biochemist 36:40–44Google Scholar
  21. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224CrossRefPubMedGoogle Scholar
  22. Hehl R (2017) From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research. Plant Sci 262:141–147CrossRefPubMedGoogle Scholar
  23. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huguet C, Crepieux P, Laudet V (1997) Rel/NF-kappa B transcription factors and I kappa B inhibitors: evolution from a unique common ancestor. Oncogene 15:2965–2974CrossRefPubMedGoogle Scholar
  25. Hussain RMF, Sheikh AH, Haider I, Quareshy M, Linthorst HJM (2018) Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1. Front Plant Sci 9:930CrossRefPubMedPubMedCentralGoogle Scholar
  26. Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285CrossRefPubMedGoogle Scholar
  27. Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395CrossRefPubMedGoogle Scholar
  28. Kanofsky K, Lehmeyer M, Schulze J, Hehl R (2016) Analysis of microbe-associated molecular pattern-responsive synthetic promoters with the parsley protoplast system. Methods Mol Biol 1482:163–174CrossRefPubMedGoogle Scholar
  29. Kanofsky K, Bahlmann AK, Hehl R, Dong DX (2017) Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters. Plant Cell Rep 36:971–986CrossRefPubMedGoogle Scholar
  30. Kawagoe Y, Murai N (1996) A novel basic region/helix-loop-helix protein binds to a G-box motif CACGTG of the bean seed storage protein β-phaseolin gene. Plant Sci 116:47–57CrossRefGoogle Scholar
  31. Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32:151–163CrossRefPubMedGoogle Scholar
  32. Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bülow L, Stahl DJ, Hehl R (2012) Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol 160:178–191CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kunsch C, Ruben SM, Rosen CA (1992) Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol 12:4412–4421CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233CrossRefPubMedGoogle Scholar
  35. Lehmeyer M, Kanofsky K, Hanko EK, Ahrendt S, Wehrs M, Machens F, Hehl R (2016) Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter. Plant Biotechnol J 14:61–71CrossRefPubMedGoogle Scholar
  36. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734CrossRefPubMedGoogle Scholar
  37. Lian TF, Xu YP, Li LF, Su XD (2017) Crystal structure of tetrameric Arabidopsis MYC2 Reveals the mechanism of enhanced interaction with DNA. Cell Rep 19:1334–1342CrossRefPubMedGoogle Scholar
  38. Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE (2015) Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 4:e07295CrossRefPubMedPubMedCentralGoogle Scholar
  39. Machens F, Becker M, Umrath F, Hehl R (2014) Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol Biol 84:371–385CrossRefPubMedGoogle Scholar
  40. Maeo K, Hayashi S, Kojima-Suzuki H, Morikami A, Nakamura K (2001) Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem 65:2428–2436CrossRefPubMedGoogle Scholar
  41. Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266CrossRefPubMedGoogle Scholar
  42. O’Malley RC, Huang SS, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292CrossRefPubMedPubMedCentralGoogle Scholar
  43. Oh DH, Kwon CS, Sano H, Chung WI, Koizumi N (2003) Conservation between animals and plants of the cis-acting element involved in the unfolded protein response. Biochem Biophys Res Commun 301:225–230CrossRefPubMedGoogle Scholar
  44. Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140:818–829CrossRefPubMedPubMedCentralGoogle Scholar
  45. Park JJ, Dempewolf E, Zhang W, Wang ZY (2017) RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS One 12:e0179410CrossRefPubMedPubMedCentralGoogle Scholar
  46. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315CrossRefPubMedGoogle Scholar
  48. Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258CrossRefGoogle Scholar
  50. Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9:425–439PubMedPubMedCentralGoogle Scholar
  51. Sambrook J, Russell RW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  52. Sebastian A, Contreras-Moreira B (2014) footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Bioinformatics 30:258–265CrossRefPubMedGoogle Scholar
  53. Siberil Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268:5655–5666CrossRefPubMedGoogle Scholar
  54. Sprenger-Haussels M, Weisshaar B (2000) Transactivation properties of parsley proline-rich bZIP transcription factors. Plant J 22:1–8CrossRefPubMedGoogle Scholar
  55. Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R (2004) AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res 32:D368–D372CrossRefPubMedPubMedCentralGoogle Scholar
  56. Töpfer R, Maas C, Horicke-Grandpierre C, Schell J, Steinbiss HH (1993) Expression vectors for high-level gene expression in dicotyledonous and monocotyledonous plants. Methods Enzymol 217:67–78PubMedGoogle Scholar
  57. Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498CrossRefPubMedGoogle Scholar
  58. Urbach JM, Ausubel FM (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci USA 114:1063–1068CrossRefPubMedGoogle Scholar
  59. Wehner N, Hartmann L, Ehlert A, Bottner S, Onate-Sanchez L, Dröge-Laser W (2011) High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J 68:560–569CrossRefPubMedGoogle Scholar
  60. Weirauch MT, Hughes TR (2011) A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 52:25–73CrossRefPubMedGoogle Scholar
  61. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJ, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431–1443CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yamasaki K, Kigawa T, Watanabe S, Inoue M, Yamasaki T, Seki M, Shinozaki K, Yokoyama S (2012) Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J Biol Chem 287:7683–7691CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214CrossRefPubMedGoogle Scholar
  66. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572CrossRefGoogle Scholar
  67. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891CrossRefPubMedGoogle Scholar
  68. Yue JX, Meyers BC, Chen JQ, Tian D, Yang S (2012) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–1063CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong MQ, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9:e1003422CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528CrossRefPubMedGoogle Scholar
  71. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13:191–202CrossRefPubMedGoogle Scholar
  72. Zhou M, Lu Y, Bethke G, Harrison BT, Hatsugai N, Katagiri F, Glazebrook J (2017) WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1. New Phytol 217:700–712CrossRefPubMedGoogle Scholar
  73. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut für GenetikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations