Plant Molecular Biology

, Volume 98, Issue 1–2, pp 153–167 | Cite as

NbGIS regulates glandular trichome initiation through GA signaling in tobacco

  • Yihua Liu
  • Dongdong Liu
  • Ali Raza Khan
  • Bohan Liu
  • Minjie Wu
  • Linli Huang
  • Junyu Wu
  • Ge Song
  • Hongwei Ni
  • Haiming Ying
  • Hao Yu
  • Yinbo GanEmail author


Key message

A novel gene NbGIS positively regulates glandular trichome initiation through GA Signaling in tobacco. NbMYB123-like regulates glandular trichome initiation by acting downstream of NbGIS in tobacco.


Glandular trichome is a specialized multicellular structure which has capability to synthesize and secrete secondary metabolites and protects plants from biotic and abiotic stresses. Our previous results revealed that a C2H2 zinc-finger transcription factor GIS and its sub-family genes act upstream of GL3/EGL3-GL1-TTG1 transcriptional activator complex to regulate trichome initiation in Arabidopsis. In this present study, we found that NbGIS could positively regulate glandular trichome development in Nicotiana benthamiana (tobacco). Our result demonstrated that 35S:NbGIS lines exhibited much higher densities of trichome on leaves, main stems, lateral branches and sepals than WT plants, while NbGIS:RNAi lines had the opposite phenotypes. Furthermore, our results also showed that NbGIS was required in response to GA signal to control glandular trichome initiation in Nicotiana benthamiana. In addition, our results also showed that NbGIS significantly influenced GA accumulation and expressions of marker genes of the GA biosynthesis, might result in the changes of growth and maturation in tobacco. Lastly, our results also showed that NbMYB123-like regulated glandular trichome initiation in tobacco by acting downstream of NbGIS. These findings provide new insights to discover the molecular mechanism by which C2H2 transcriptional factors regulates glandular trichome initiation through GA signaling pathway in tobacco.


Glandular trichome NbGIS GA signaling NbMYB123-like Tobacco 



Basic helix-loop-helix




Cycle threshold


Gibberellin acid


Glabrous inflorescence stems




Salicylic acid


Virus-induced gene silencing



The research was funded by National Natural Science Foundation of China (Grant Nos. 31529001; 31570183; 31661143004); Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ15C020001); Major State Basic Research Development Program (973 Program, Grant No. 2015CB150200) and the National Key R & D Program of China (2016YFD0100701).

Author contributions

YL contributed to all experiments and manuscript preparation. YG, YH and YL conceived and designed the study and wrote the manuscript; DL and BL analyzed data; YL, JW and GS involved in gene cloning, gene transformation and hormone experiments; MW, ARK, HY, HN and LH contributed to gene expression analysis and trichome phenotype analyses. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Research involving human and animal rights

This study did not involve human and animal subjects.

Supplementary material

11103_2018_772_MOESM1_ESM.doc (4.4 mb)
Supplementary material 1 (DOC 4476 KB)
11103_2018_772_MOESM2_ESM.xls (31 kb)
Supplementary material 1 (XLS 31 KB)


  1. Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092. CrossRefPubMedGoogle Scholar
  2. An L, Zhou Z, Yan A, Gan Y (2011) Progress on trichome development regulated by phytohormone signaling. Plant Signal Behav 6:1959–1962. CrossRefPubMedPubMedCentralGoogle Scholar
  3. An L, Zhou Z, Su S, Yan A, Gan Y (2012) GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis. Plant Cell Physiol 53:457–469. CrossRefPubMedGoogle Scholar
  4. Bao S, An L, Su S, Zhou Z, Gan Y (2011) Expression patterns of nitrate, phosphate, and sulfate transporters in Arabidopsis roots exposed to different nutritional regimes. Botany 89:647–653. CrossRefGoogle Scholar
  5. Campos ML et al (2009) Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J Exp Bot 60:4347–4361. CrossRefPubMedGoogle Scholar
  6. Cao H et al (2016) Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol 211:1035–1051. CrossRefPubMedGoogle Scholar
  7. Chen MX et al (2012) The effect of Transparent Testa2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160:1023–1036. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chien JC, Sussex IM (1996) Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by Gibberellins and photoperiod in Arabidopsis thaliana (L) Heynh. Plant Physiol 111:1321–1328. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choi YE et al (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes Plant J 70:480–491. CrossRefPubMedGoogle Scholar
  10. Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160. CrossRefPubMedGoogle Scholar
  11. Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151. CrossRefPubMedGoogle Scholar
  12. Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG (2005) Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 222:730–742. CrossRefPubMedGoogle Scholar
  13. Gan Y, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P (2006) GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18:1383–1395. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gan Y, Liu C, Yu H, Broun P (2007a) Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134:2073–2081. CrossRefPubMedGoogle Scholar
  15. Gan Y, Yu H, Peng J, Broun P (2007b) Genetic and molecular regulation by DELLA proteins of trichome development in Arabidopsis. Plant Physiol 145:1031–1042. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gan Y, Zhou Z, An L, Bao S, Liu Q, Srinivasan M, Goddard P (2010) The effects of fluctuations in the nutrient supply on the expression of ANR1 and 11 other MADS box genes in shoots and roots of Arabidopsis thaliana. Botany 88:1023–1031. CrossRefGoogle Scholar
  17. Glover BJ, Perez-Rodriguez M, Martin C (1998) Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125:3497–3508PubMedGoogle Scholar
  18. Golz JF, Allen PJ, Li SF, Parish RW, Jayawardana NU, Bacic A, Doblin MS (2018) Layers of regulation—insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Plant Sci 272:179–192. CrossRefPubMedGoogle Scholar
  19. Harada E, Kim J-A, Meyer AJ, Hell R, Clemens S, Choi Y-E (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637. CrossRefPubMedGoogle Scholar
  20. Heppel SC, Jaffe FW, Takos AM, Schellmann S, Rausch T, Walker AR, Bogs J (2013) Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Mol Biol 82:457–471. CrossRefPubMedGoogle Scholar
  21. Huchelmann A, Boutry M, Hachez C (2017) Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol 175:6–22. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ishida T et al (2007) Arabidopsis transparent testa GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19:2531–2543. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jacobsen SE, Olszewski NE (1993) Mutations at the spindly locus of arabidopsis alter gibberellin signal- transduction. Plant Cell 5:887–896. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jacobsen SE, Binkowski KA, Olszewski NE (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction Arabidopsis. Proc Natl Acad Sci USA 93:9292–9296. CrossRefPubMedGoogle Scholar
  25. Kang JH et al (2016) Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. J Exp Bot 67:5313–5324. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM (1992) Leaf surface chemicals fromNicotiana affecting germination of Peronospora tabacina (adam) sporangia. J Chem Ecol 18:1467–1479. CrossRefPubMedGoogle Scholar
  27. Kennedy BS, Nielsen MT, Severson RF (1995) Biorationals from Nicotiana protect cucumbers against Colletotrichum lagenarium (Pass.) ell. & halst disease development. J Chem Ecol 21:221–231. CrossRefPubMedGoogle Scholar
  28. Kusaba S, Kano-Murakami Y, Matsuoka M, Tamaoki M, Sakamoto T, Yamaguchi I, Fukumoto M (1998) Alteration of hormone levels in transgenic tobacco plants overexpressing the rice homeobox gene OSH1. Plant Physiol 116:471–476CrossRefPubMedPubMedCentralGoogle Scholar
  29. Laity H, Lee BM, Wright PE (2001) Zinc finger proteins new insights into structural and functionaldiversity. Curr Opin Struct Biol 11:39–46CrossRefPubMedGoogle Scholar
  30. Lempe J, Lachowiec J, Sullivan AM, Queitsch C (2013) Molecular mechanisms of robustness in plants. Curr Opin Plant Biol 16:62–69. CrossRefPubMedGoogle Scholar
  31. Lin Y, Wagner GJ (1994) Surface disposition and stability of pest-interactive, trichome-exuded diterpenes and sucrose esters of tobacco. J Chem Ecol 20:1907–1921. CrossRefPubMedGoogle Scholar
  32. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429CrossRefPubMedGoogle Scholar
  33. Liu Y et al (2017) AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochem Biophys Res Commun 483:209–215. CrossRefPubMedGoogle Scholar
  34. Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775CrossRefGoogle Scholar
  35. Ma D et al (2016) Genetic basis for glandular trichome formation in cotton. Nat Commun 7:10456. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marciano DC, Lua RC, Katsonis P, Amin SR, Herman C, Lichtarge O (2014) Negative feedback in genetic circuits confers evolutionary resilience and capacitance. Cell Rep 7:1789–1795. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martinez NJ et al (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22:2535–2549. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Matias-Hernandez L, Jiang W, Yang K, Tang K, Brodelius PE, Pelaz S (2017) AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J 90:520–534. CrossRefPubMedGoogle Scholar
  39. Patra B, Pattanaik S, Yuan L (2013) Ubiquitin protein ligase 3 mediates the proteasomal degradation of glabrous 3 and enhancer of glabrous 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74:435–447. CrossRefPubMedGoogle Scholar
  40. Patra B, Pattanaik S, Yuan L (2014) Proteolytic degradation of the flavonoid regulators, transparent testa8 and transparent testa glabra1, in Arabidopsisis mediated by the ubiquitin/26Sproteasome system. Plant Signal Behav 8:e25901. CrossRefGoogle Scholar
  41. Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichome development in the model plant Arabidopsis. Front Plant Sci 5:259. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Payne T, Clement J, Arnold D, Lloyd A (1999) Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671–682PubMedGoogle Scholar
  43. Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG. Genetics 156:1349–1362PubMedPubMedCentralGoogle Scholar
  44. Perazza D, Vachon G, Herzog M (1998) Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiol 117:375–383. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C (2005) Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132:359–370. CrossRefPubMedGoogle Scholar
  46. Qi T et al (2011) The jasmonate-ZIM-Domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated Anthocyanin Accumulation and Trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D (2014) ArabidopsisDELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26:1118–1133. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rios-Estepa R, Turner GW, Lee JM, Croteau RB, Lange BM (2008) A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc Natl Acad Sci USA 105:2818–2823. CrossRefPubMedGoogle Scholar
  49. Roda AL, Oldham NJ, Svatos A, Baldwin IT (2003) Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata). Phytochemistry 62:527–536CrossRefPubMedGoogle Scholar
  50. Sako K, Maki Y, Imai KK, Aoyama T, Goto DB, Yamaguchi J (2010) Control of endoreduplication of trichome by RPT2a, a subunit of the 19S proteasome in Arabidopsis. J Plant Res 123:701–706. CrossRefPubMedGoogle Scholar
  51. Sallets A, Beyaert M, Boutry M, Champagne A (2014) Comparative proteomics of short and tall glandular trichomes of Nicotiana tabacum reveals differential metabolic activities. J Proteome Res 13:3386–3396. CrossRefPubMedGoogle Scholar
  52. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711. CrossRefPubMedGoogle Scholar
  53. Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280. CrossRefPubMedGoogle Scholar
  54. Shi P et al (2018) The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol 217:261–276. CrossRefPubMedGoogle Scholar
  55. Sun L et al (2015) GLABROUS INFLORESCENCE STEMS3 (GIS3) regulates trichome initiation and development in Arabidopsis. New Phytol 206:220–230. CrossRefPubMedGoogle Scholar
  56. Takatsuji H (1999) Zinc-finger proteins the classical zinc finger emerges in contemporaryplant science. Plant Mol Biol 39:1073–1078CrossRefPubMedGoogle Scholar
  57. Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuoka M (1998) Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. Plant J 15:391–400CrossRefPubMedGoogle Scholar
  58. Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68. CrossRefPubMedGoogle Scholar
  59. Tozin LR, Marques MO, Rodrigues TM (2015) Glandular trichome density and essential oil composition in leaves and inflorescences of Lippia origanoides Kunth (Verbenaceae) in the Brazilian Cerrado An. Acad Bras Cienc 87:943–953. CrossRefGoogle Scholar
  60. Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vidal AM, Gisbert C, Talon M, Primo-Millo E, Lopez-Diaz I, Garcia-Martinez JL (2001) The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco. Physiol Plant 112:251–260CrossRefPubMedGoogle Scholar
  62. Wagner GJ (1991) Secreting glandular trichomes-more than just hairs. Plant Physiol 96:675–679. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Walker AR et al (1999) The transparent testa glabra1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1350CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W (2012) Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. Plant Cell Rep 31:2215–2227. CrossRefPubMedGoogle Scholar
  65. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251. CrossRefPubMedGoogle Scholar
  66. Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 9:e85208. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang C, Ye Z (2013) Trichomes as models for studying plant cell differentiation. Cell Mol Life Sci 70:1937–1948. CrossRefPubMedGoogle Scholar
  68. Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY (2010) Temporal control of trichome distribution by MicroRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell Online 22:2322–2335. CrossRefGoogle Scholar
  69. Yu C et al (2015) MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS ONE 10:e0135196. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869. CrossRefPubMedGoogle Scholar
  71. Zhang A et al (2016) The Arabidopsis gene zinc finger protein 3(ZFP3) Is Involved in salt stress and osmotic stress response. PLoS ONE 11:e0168367. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A (2008) The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999. CrossRefPubMedGoogle Scholar
  73. Zhou Z et al (2011) Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein8 in Arabidopsis. Plant Physiol 157:673–682. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhou Z, An L, Sun L, Gan Y (2012) ZFP5 encodes a functionally equivalent GIS protein to control trichome initiation. Plant Signal Behav 7:28–30. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhou Z, Sun L, Zhao Y, An L, Yan A, Meng X, Gan Y (2013) Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol 198:699–708. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yihua Liu
    • 1
  • Dongdong Liu
    • 1
  • Ali Raza Khan
    • 1
  • Bohan Liu
    • 1
  • Minjie Wu
    • 1
  • Linli Huang
    • 1
  • Junyu Wu
    • 1
  • Ge Song
    • 1
  • Hongwei Ni
    • 1
  • Haiming Ying
    • 1
  • Hao Yu
    • 2
  • Yinbo Gan
    • 1
    Email author
  1. 1.Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Department of Biological Sciences and Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore

Personalised recommendations