Advertisement

Plant Molecular Biology

, Volume 97, Issue 1–2, pp 23–36 | Cite as

Functionally redundant LNG3 and LNG4 genes regulate turgor-driven polar cell elongation through activation of XTH17 and XTH24

  • Young Koung Lee
  • Ji Ye Rhee
  • Seong Hee Lee
  • Gap Chae Chung
  • Soon Ju Park
  • Shoji Segami
  • Masayohi Maeshima
  • Giltsu Choi
Article

Abstract

Key message

In this work, we genetically characterized the function of Arabidopsis thaliana, LONGIFOLIA (LNG1), LNG2, LNG3, LNG4, their contribution to regulate vegetative architecture in plant. We used molecular and biophysical approaches to elucidate a gene function that regulates vegetative architecture, as revealed by the leaf phenotype and later effects on flowering patterns in Arabidopsis loss-of-function mutants. As a result, LNG genes play an important role in polar cell elongation by turgor pressure controlling the activation of XTH17 and XTH24.

Abstract

Plant vegetative architecture is related to important traits that later influence the floral architecture involved in seed production. Leaf morphology is the primary key trait to compose plant vegetative architecture. However, molecular mechanism on leaf shape determination is not fully understood even in the model plant A. thaliana. We previously showed that LONGIFOLIA (LNG1) and LONGIFOLIA2 (LNG2) genes regulate leaf morphology by promoting longitudinal cell elongation in Arabidopsis. In this study, we further characterized two homologs of LNG1, LNG3, and LNG4, using genetic, biophysical, and molecular approaches. Single loss-of-function mutants, lng3 and lng4, do not show any phenotypic difference, but mutants of lng quadruple (lngq), and lng1/2/3 and lng1/2/4 triples, display reduced leaf length, compared to wild type. Using the paradermal analysis, we conclude that the reduced leaf size of lngq is due to decreased cell elongation in the direction of longitudinal leaf growth, and not decreased cell proliferation. This data indicate that LNG1/2/3/4 are functionally redundant, and are involved in polar cell elongation in Arabidopsis leaf. Using a biophysical approach, we show that the LNGs contribute to maintain high turgor pressure, thus regulating turgor pressure-dependent polar cell elongation. In addition, gene expression analysis showed that LNGs positively regulate the expression of the cell wall modifying enzyme encoded by a multi-gene family, xyloglucan endotransglucosylase/hydrolase (XTH). Taking all of these together, we propose that LNG related genes play an important role in polar cell elongation by changing turgor pressure and controlling the activation of XTH17 and XTH24.

Keywords

Polar cell elongation LONGIFOLIA Turgor pressure XTH 

Notes

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01365803)” Rural Development Administration, Republic of Korea and the Next-Generation BioGreen 21 Program (PMBC, PJ011912012016 to S.J.P.)

Supplementary material

11103_2018_722_MOESM1_ESM.jpg (75 kb)
Supplementary Fig. 1. Phenotype of WT (A), lng1-1D (B) and lngq (C) grown in the ½ MS media condition for the western blot analysis. Supplementary material 1 (JPG 75 KB)
11103_2018_722_MOESM2_ESM.jpg (84 kb)
Supplementary Fig. 2. Gene expression analysis of expansin genes and endo-1,4-beta-glucanase genes. Expansin genes include EXPANSIN 1, 3, 4, 6, 9, 11, 13, 14, 15, 18, 20, 21 and endo-1,4-betaglucanases include At1g48930, At1g65610, At1g75680 and At5g49720. Supplementary material 2 (JPG 83 KB)
11103_2018_722_MOESM3_ESM.xlsx (53 kb)
Supplementary material 3 (XLSX 52 KB)
11103_2018_722_MOESM4_ESM.doc (78 kb)
Supplementary material 4 (DOC 78 KB)

References

  1. Akamatsu T, Hanzawa Y, Ohtake Y, Takahashi T, Nishitani K, Komeda Y (1999) Expression of endoxyloglucan transferase genes in acaulis mutants of Arabidopsis. Plant Physiol 121(3):715–722CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azaizeh H, Gunse B, Steudle E (1992) Effects of NaCl and CaCl(2) on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99(3):886–894CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol Biol 61(3):451–467.  https://doi.org/10.1007/s11103-006-0021-z CrossRefPubMedGoogle Scholar
  4. Berna G, Robles P, Micol JL (1999) A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152(2):729–742PubMedPubMedCentralGoogle Scholar
  5. Braidwood L, Breuer C, Sugimoto K (2014) My body is a cage: mechanisms and modulation of plant cell growth. New Phytol 201(2):388–402.  https://doi.org/10.1111/nph.12473 CrossRefPubMedGoogle Scholar
  6. Campbell P, Braam J (1999) In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant J 18(4):371–382CrossRefPubMedGoogle Scholar
  7. Champagne C, Sinha N (2004) Compound leaves: equal to the sum of their parts? Development 131(18):4401–4412.  https://doi.org/10.1242/dev.01338 CrossRefPubMedGoogle Scholar
  8. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164(4):1600–1618.  https://doi.org/10.1104/pp.113.233791 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Q, Xie Q, Gao J, Wang W, Sun B, Liu B, Zhu H, Peng H, Zhao H, Liu C, Wang J, Zhang J, Zhang G, Zhang Z (2015) Characterization of rolled and erect leaf 1 in regulating leave morphology in rice. J Exp Bot 66(19):6047–6058.  https://doi.org/10.1093/jxb/erv319 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chitwood DH, Sinha NR (2016) Evolutionary and environmental forces sculpting leaf development. Curr Biol 26(7):R297–R306.  https://doi.org/10.1016/j.cub.2016.02.033 CrossRefPubMedGoogle Scholar
  11. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  12. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326.  https://doi.org/10.1038/35030000 CrossRefPubMedGoogle Scholar
  13. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476.  https://doi.org/10.1093/jxb/erv511 CrossRefPubMedGoogle Scholar
  14. Dkhar J, Pareek A (2014) What determines a leaf’s shape? EvoDevo 5(1):47.  https://doi.org/10.1186/2041-9139-5-47 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eklof JM, Brumer H (2010) The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol 153(2):456–466.  https://doi.org/10.1104/pp.110.156844 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferjani A, Maeshima M (2016) Editorial: multiple facets of H(+)-pyrophosphatase and related enzymes. Front Plant Sci 7:1265.  https://doi.org/10.3389/fpls.2016.01265 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gao J, Sun L, Yang X, Liu JX (2014) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE 8(6):e64643.  https://doi.org/10.1371/journal.pone.0064643 CrossRefPubMedGoogle Scholar
  18. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509–1517PubMedGoogle Scholar
  19. Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D’Eustachio P, Fabregat A, Jiao Y, Keays M, Lee YK, Kumari S, Mulvaney J, Olson A, Preece J, Stein J, Wei S, Weiser J, Huerta L, Petryszak R, Kersey P, Stein LD, Ware D, Jaiswal P (2016) Gramene database: navigating plant comparative genomics resources. Curr Plant Biol 7–8:10–15.  https://doi.org/10.1016/j.cpb.2016.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Han Y, Zhu Q, Zhang Z, Meng K, Hou Y, Ban Q, Suo J, Rao J (2015) Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS ONE 10(4):e0123668.  https://doi.org/10.1371/journal.pone.0123668 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Han Y, Ban Q, Hou Y, Meng K, Suo J, Rao J (2016a) Isolation and characterization of two persimmon xyloglucan endotransglycosylase/hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Front Plant Sci 7:624.  https://doi.org/10.3389/fpls.2016.00624 PubMedPubMedCentralGoogle Scholar
  22. Han Y, Ban Q, Li H, Hou Y, Jin M, Han S, Rao J (2016b) DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Sci Rep 6:39155.  https://doi.org/10.1038/srep39155 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43(1):68–78.  https://doi.org/10.1111/j.1365-313X.2005.02429.x CrossRefPubMedGoogle Scholar
  24. Hyodo H, Yamakawa S, Takeda Y, Tsuduki M, Yokota A, Nishitani K, Kohchi T (2003) Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol Biol 52(2):473–482CrossRefPubMedGoogle Scholar
  25. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907PubMedPubMedCentralGoogle Scholar
  26. Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12(15):2381–2391CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21(6):1267–1279.  https://doi.org/10.1093/emboj/21.6.1267 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45(12):1749–1758.  https://doi.org/10.1093/pcp/pci015 CrossRefPubMedGoogle Scholar
  29. Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133(21):4305–4314.  https://doi.org/10.1242/dev.02604 CrossRefPubMedGoogle Scholar
  30. Lee SH, Zwiazek JJ, Chung GC (2008) Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures. Physiol Plant 133(2):354–362.  https://doi.org/10.1111/j.1399-3054.2008.01082.x CrossRefPubMedGoogle Scholar
  31. Lee SH, Chung GC, Jang JY, Ahn SJ, Zwiazek JJ (2012) Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol 159(1):479–488.  https://doi.org/10.1104/pp.112.194506 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Maeshima M (2000) Vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1465(1–2):37–51CrossRefPubMedGoogle Scholar
  33. Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264(33):20068–20073PubMedGoogle Scholar
  34. Matsuura-Endo C, Maeshima M, Yoshida S (1992) Mechanism of the decline in vacuolar H-ATPase activity in mung bean hypocotyls during chilling. Plant Physiol 100(2):718–722CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miura K, Lee J, Miura T, Hasegawa PM (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51(1):103–113.  https://doi.org/10.1093/pcp/pcp171 CrossRefPubMedGoogle Scholar
  36. Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrich J, Tsukaya H (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J 38(4):699–713.  https://doi.org/10.1111/j.1365-313X.2004.02078.x CrossRefPubMedGoogle Scholar
  37. Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van Bel M, Vervoort M, Candaele J, De Block J, Aesaert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inze D, De Jaeger G (2015) Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27(6):1605–1619.  https://doi.org/10.1105/tpc.15.00269 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Perez-Perez JM, Candela H, Robles P, Quesada V, Ponce MR, Micol JL (2009) Lessons from a search for leaf mutants in Arabidopsis thaliana. Int J Dev Biol 53(8–10):1623–1634.  https://doi.org/10.1387/ijdb.072534jp CrossRefPubMedGoogle Scholar
  39. Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S (2014) XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J 80(4):604–614.  https://doi.org/10.1111/tpj.12654 CrossRefPubMedGoogle Scholar
  40. Schmidt R, Kunkowska AB, Schippers JH (2016) Role of reactive oxygen species during cell expansion in leaves. Plant Physiol 172(4):2098–2106.  https://doi.org/10.1104/pp.16.00426 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Segami S, Nakanishi Y, Sato MH, Maeshima M (2010) Quantification, organ-specific accumulation and intracellular localization of type II H(+)-pyrophosphatase in Arabidopsis thaliana. Plant Cell Physiol 51(8):1350–1360.  https://doi.org/10.1093/pcp/pcq096 CrossRefPubMedGoogle Scholar
  42. Shin YK, Yum H, Kim ES, Cho H, Gothandam KM, Hyun J, Chung YY (2006) BcXTH1, a Brassica campestris homologue of Arabidopsis XTH9, is associated with cell expansion. Planta 224(1):32–41.  https://doi.org/10.1007/s00425-005-0189-5 CrossRefPubMedGoogle Scholar
  43. Stern MD, Aihara H, Cho KH, Kim GT, Horiguchi G, Roccaro GA, Guevara E, Sun HH, Negeri D, Tsukaya H, Nibu Y (2007) Structurally related Arabidopsis ANGUSTIFOLIA is functionally distinct from the transcriptional corepressor CtBP. Dev Genes Evol 217(11–12):759–769.  https://doi.org/10.1007/s00427-007-0186-8 CrossRefPubMedGoogle Scholar
  44. Steudle E, Murrmann M, Peterson CA (1993) Transport of water and solutes across maize roots modified by puncturing the endodermis (further evidence for the composite transport model of the root). Plant Physiol 103(2):335–349CrossRefPubMedPubMedCentralGoogle Scholar
  45. Suga S, Imagawa S, Maeshima M (2001) Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs. Planta 212(2):294–304.  https://doi.org/10.1007/s004250000396 CrossRefPubMedGoogle Scholar
  46. Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D’Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44(D1):D1133–D1140.  https://doi.org/10.1093/nar/gkv1179 CrossRefPubMedGoogle Scholar
  47. Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122(5):1589–1600PubMedGoogle Scholar
  48. Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496.  https://doi.org/10.1146/annurev.arplant.57.032905.105320 CrossRefPubMedGoogle Scholar
  49. Tsukaya H, Naito S, Redei GP, Komeda Y (1993) A new class of mutations in Arabidopsis thaliana, acaulis1, affecting the development of both inflorescences and leaves. Development 118:751–764Google Scholar
  50. Van Sandt VS, Guisez Y, Verbelen JP, Vissenberg K (2007a) Xyloglucan endotransglycosylase/hydrolase (XTH) is encoded by a multi-gene family in the primitive vascular land plant Selaginella kraussiana. Plant Biol 9(1):142–146.  https://doi.org/10.1055/s-2006-924661 CrossRefPubMedGoogle Scholar
  51. Van Sandt VS, Suslov D, Verbelen JP, Vissenberg K (2007b) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100(7):1467–1473.  https://doi.org/10.1093/aob/mcm248 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122(4):1003–1013CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang H, Zhao FG, Tang RJ, Yu Y, Song J, Wang Y, Li L, Luan S (2017a) Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Proc Natl Acad Sci USA 114(10):E2036–E2045.  https://doi.org/10.1073/pnas.1616203114 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang Z, Wang N, Jiang S, Xu H, Wang Y, Wang C, Li M, Liu J, Qu C, Liu W, Wu S, Chen X, Chen X (2017b) Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. J Agric Food Chem 65(2):429–434.  https://doi.org/10.1021/acs.jafc.6b04536 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Young Koung Lee
    • 1
    • 5
  • Ji Ye Rhee
    • 2
  • Seong Hee Lee
    • 3
  • Gap Chae Chung
    • 2
  • Soon Ju Park
    • 5
  • Shoji Segami
    • 4
  • Masayohi Maeshima
    • 4
  • Giltsu Choi
    • 1
  1. 1.Department of Biological SciencesKAISTDaejeonSouth Korea
  2. 2.Department of Plant Biotechnology, Agricultural Plant Stress Research Center, College of Agriculture and Life SciencesChonnam National UniversityGwangjuSouth Korea
  3. 3.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  4. 4.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  5. 5.Division of Biological Sciences and Institute for Basic Science/Division of Biological Sciences and Research Institute for GlycoscienceWonkwang UniversityIksanSouth Korea

Personalised recommendations