Plant Molecular Biology

, Volume 96, Issue 3, pp 279–289 | Cite as

Longevity in vivo of primary cell wall cellulose synthases

  • Joseph Lee HillJr.
  • Cooper Josephs
  • William J. Barnes
  • Charles T. Anderson
  • Ming Tien


Key message

Our work focuses on understanding the lifetime and thus stability of the three main cellulose synthase (CESA) proteins involved in primary cell wall synthesis of Arabidopsis. It had long been thought that a major means of CESA regulation was via their rapid degradation. However, our studies here have uncovered that AtCESA proteins are not rapidly degraded. Rather, they persist for an extended time in the plant cell.


Plant cellulose is synthesized by membrane-embedded cellulose synthase complexes (CSCs). The CSC is composed of cellulose synthases (CESAs), of which three distinct isozymes form the primary cell wall CSC and another set of three isozymes form the secondary cell wall CSC. We determined the stability over time of primary cell wall (PCW) CESAs in Arabidopsis thaliana seedlings, using immunoblotting after inhibiting protein synthesis with cycloheximide treatment. Our work reveals very slow turnover for the Arabidopsis PCW CESAs in vivo. Additionally, we show that the stability of all three CESAs within the PCW CSC is altered by mutations in individual CESAs, elevated temperature, and light conditions. Together, these results suggest that CESA proteins are very stable in vivo, but that their lifetimes can be modulated by intrinsic and environmental cues.


Arabidopsis thaliana Cellulose synthase Western blot Primary cell wall CESA Cycloheximide Protein lifetime 



The authors thank Abhinaya Srikanth for the gift of Anti-UBIQUITIN antibody. This work was supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090. The authors declare no conflict of interest.

Author contributions

CJ and WJB contributed equally as second and third authors. Conceived and designed the experiments: JLH WJB CTA MT. Performed the experiments: JLH WJB CJ. Analyzed the data: JLH WJB CTA MT. Wrote the paper: JLH WJB CTA MT.

Supplementary material

11103_2017_695_MOESM1_ESM.pdf (723 kb)
Supplementary material 1 (PDF 723 KB)
11103_2017_695_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 KB)


  1. Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefPubMedGoogle Scholar
  2. Bashline L, Li SD, Anderson CT, Lei L, Gu Y (2013) The endocytosis of cellulose synthase in Arabidopsis is dependent on mu 2, a clathrin-mediated endocytosis adaptin. Plant Physiol 163:150–160CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bashline L, Li SD, Zhu XY, Gu Y (2015) The TWD40–2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. Proc Nat Acad Sci 112:12870–12875CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis—4 mutants with dramatically altered root morphogenesis. Development 119:57–70PubMedGoogle Scholar
  5. Bischoff V, Desprez T, Mouille G, Vernhettes S, Gonneau M, Hofte H (2011) Phytochrome regulation of cellulose synthesis in Arabidopsis. Curr Biol 21:1822–1827CrossRefPubMedGoogle Scholar
  6. Chang CSJ, Maloof JN, Wu SH (2011) COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol 156:228–239CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen SL, Ehrhardt DW, Somerville CR (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Nat Acad Sci 107:17188–17193CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  9. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861CrossRefPubMedGoogle Scholar
  10. Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE: a modular binary vector series suited for both monocot and dicot plant transformation. Trans Res 16:771–781CrossRefGoogle Scholar
  11. De Rybel B, van den Berg W, Lokerse A, Liao CY, van Mourik H, Moller B, Peris CL, Weijers D (2011) A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol 156:1292–1299CrossRefPubMedPubMedCentralGoogle Scholar
  12. Desnos T, Orbovic V, Bellini C, Kronenberger J, Caboche M, Traas J, Hofte H (1996) Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark and light-grown Arabidopsis seedlings. Development 122:683–693PubMedGoogle Scholar
  13. Desprez T, Vernhettes S, Fagard M, Refregier G, Desnos T, Aletti E, Py N, Pelletier S, Hofte H (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128:482–490CrossRefPubMedPubMedCentralGoogle Scholar
  14. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Nat Acad Sci 104:15572–15577CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Hofte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J 66:915–928CrossRefPubMedGoogle Scholar
  17. Gonneau M, Desprez T, Guillot A, Vernhettes S, Hofte H (2014) Catalytic subunit stoichiometry within the cellulose synthase complex. Plant Physiol 166:1709–1712CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276CrossRefPubMedGoogle Scholar
  19. Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52:161–175CrossRefPubMedGoogle Scholar
  20. Hill JL Jr, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–4842CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ivakov A, Flis A, Apelt F, Funfgeld M, Scherer U, Stitt M, Kragler F, Vissenberg K, Persson S, Suslov D (2017) Cellulose synthesis and cell expansion are regulated by different mechanisms in growing Arabidopsis hypocotyls. Plant Cell 29:1305–1315PubMedPubMedCentralGoogle Scholar
  22. Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jang IC, Yang JY, Seo HS, Chua NH (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19:593–602CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kong DY, Karve R, Willet A, Chen MK, Oden J, Shpak ED (2012) Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. Plant Physiol 159:156–168CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kumar M, Wightman R, Atanassov I, Gupta A, Hurst CH, Hemsley PA, Turner S (2016) S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 353:166–169CrossRefPubMedGoogle Scholar
  26. Kurepa J, Karangwa C, Duke LS, Smalle JA (2010) Arabidopsis sensitivity to protein synthesis inhibitors depends on 26S proteasome activity. Plant Cell Rep 29:249–259CrossRefPubMedGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  28. Lertpiriyapong K, Sung ZR (2003) The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. Plant Mol Biol 53:581–595CrossRefPubMedGoogle Scholar
  29. Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arabidopsis Book 12:e0169CrossRefPubMedPubMedCentralGoogle Scholar
  30. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in Mung bean cell walls. Plant Physiol 163:1558–1567CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Hofte H (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013CrossRefPubMedPubMedCentralGoogle Scholar
  33. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495CrossRefPubMedGoogle Scholar
  34. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571CrossRefPubMedPubMedCentralGoogle Scholar
  35. Peterson GL (1977) Simplification of protein assay method of lowry Et Al—which is more generally applicable. Anal Biochem 83:346–356CrossRefPubMedGoogle Scholar
  36. Pysh L, Alexander N, Swatzyna L, Harbert R (2012) Four alleles of AtCESA3 form an allelic series with respect to root phenotype in Arabidopsis thaliana. Physiol Plant 144:369–381CrossRefPubMedGoogle Scholar
  37. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521CrossRefPubMedPubMedCentralGoogle Scholar
  38. Robinson DG, Quader H (1980) Structure, synthesis and orientation of Microfibrils.7. Microtubule reassembly invivo after cold treatment in Oocystis and its relevance to microfibril orientation. Euro J Cell Biol 21:229–230Google Scholar
  39. Rudolph U, Gross H, Schnepf E (1989) Investigations of the turnover of the putative cellulose-synthesizing particle rosettes within the plasma-membrane of Funaria-Hygrometrica Protonema Cells.2. Rosette structure and the effects of cycloheximide, actinomycin-d, 2,6-dichlorobenzonitrile, biofluor, heat-shock, and plasmolysis. Protoplasma 148:57–69CrossRefGoogle Scholar
  40. Salmon J, Ramos J, Callis J (2008) Degradation of the auxin response factor ARF1. Plant J 54:118–128CrossRefPubMedGoogle Scholar
  41. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688CrossRefPubMedPubMedCentralGoogle Scholar
  42. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009) Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet 5:e10000328CrossRefGoogle Scholar
  44. Turner SR, Taylor N, Jones L (2001) Mutations of the secondary cell wall. Plant Mol Biol 47:209–219CrossRefPubMedGoogle Scholar
  45. Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Hofte H, Gonneau M, Vernhettes S (2014) The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol 165:1521–1532CrossRefPubMedPubMedCentralGoogle Scholar
  46. Verbančič J, Lunn JE, Stitt M, Persson S (2017) Carbon supply and the regulation of cell wall synthesis. Mol Plant. PubMedGoogle Scholar
  47. Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369–2375CrossRefPubMedGoogle Scholar
  48. Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786CrossRefPubMedGoogle Scholar
  49. Williamson RE, Burn JE, Birch R, Baskin TI, Arioli T, Betzner AS, Cork A (2001a) Morphology of rsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215:116–127CrossRefPubMedGoogle Scholar
  50. Williamson RE, Burn JE, Hocart CH (2001b) Cellulose synthesis: mutational analysis and genomic perspectives using Arabidopsis thaliana. Cell MolLife Sci 58:1475–1490CrossRefGoogle Scholar
  51. Xiao CW, Zhang T, Zheng YZ, Cosgrove DJ, Anderson CT (2016) Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol 170:234–249CrossRefPubMedGoogle Scholar
  52. Yewdell JW, Lacsina JR, Rechsteiner MC, Nicchitta CV (2011) Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol Int 35:457–462CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang YW, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang SS, Sun L, Dong XR, Lu SJ, Tian WD, Liu JX (2016) Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis. J Integr Plant Biol 58:623–626CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Center for Lignocellulose Structure and FormationThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of HorticultureMichigan State UniversityEast LansingUSA
  5. 5.University ParkUSA

Personalised recommendations