Plant Molecular Biology

, Volume 96, Issue 3, pp 291–304 | Cite as

Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor

  • Erasto Hernández-Calderón
  • Maria Elizabeth Aviles-Garcia
  • Diana Yazmín Castulo-Rubio
  • Lourdes Macías-Rodríguez
  • Vicente Montejano Ramírez
  • Gustavo Santoyo
  • José López-Bucio
  • Eduardo Valencia-Cantero


Key message

Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits.


Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.


Rhizhosphere Root exudates Volatile compounds Plant defense Jasmonic acid 



We thank the Coordinación de la Investigación Científica UMSNH (México, grant 2.22) for providing financial support.

Author contributions

EHC: data collection, data analysis and interpretation, drafting the article; MEAG: data collection; DYCR: data collection; LMR: data collection, data analysis and interpretation; VMR: data collection; GS: data analysis and interpretation; JLB: data analysis and interpretation, Drafting the article and EVC: conception or design of the work, data analysis and interpretation, final approval of the version to be published.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2017_694_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 KB)
11103_2017_694_MOESM2_ESM.xlsx (16 kb)
Supplementary material 2 (XLSX 16 KB)
11103_2017_694_MOESM3_ESM.xlsx (12 kb)
Supplementary material 3 (XLSX 12 KB)
11103_2017_694_MOESM4_ESM.tif (21.7 mb)
Supplementary material 4 (TIF 22192 KB)


  1. Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán AF (2011) Towards a knowledge-based correction of Fe chlorosis. Plant Physiol Biochem 49:471–482. CrossRefPubMedGoogle Scholar
  2. Aka RJN, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytorem 18:200–209. CrossRefGoogle Scholar
  3. Attila C, Ueda A, Cirillo SLG, Cirillo JD, Chen W, Wood TK (2008) Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microb Biotechnol 1:17–29. PubMedGoogle Scholar
  4. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. CrossRefPubMedGoogle Scholar
  5. Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. CrossRefPubMedGoogle Scholar
  7. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. CrossRefPubMedGoogle Scholar
  9. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals. Plant Soil 256:67–83. CrossRefGoogle Scholar
  10. Blom D, Fabbri C, Eberl L, Weisskopf L (2011a) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microb 77:1000–1008. CrossRefGoogle Scholar
  11. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011b) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. CrossRefPubMedGoogle Scholar
  12. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microb 74:738–744. CrossRefGoogle Scholar
  13. Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MC, Santoyo G, Macías-Rodríguez LI, Valencia-Cantero E (2015) Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623. CrossRefGoogle Scholar
  14. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349. CrossRefPubMedGoogle Scholar
  15. DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis yellow stripe-like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39:403–414. CrossRefPubMedGoogle Scholar
  16. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7. CrossRefPubMedGoogle Scholar
  18. Enomoto Y, Goto F (2013) Long-distance signaling of iron deficiency in plants. In: Baluska F (ed) Long-distance systemic signaling and communication in plants. Springer, Berlin, pp 167–188CrossRefGoogle Scholar
  19. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83. CrossRefGoogle Scholar
  21. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontolia Electronica 4:1–9Google Scholar
  22. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up Fe as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346. CrossRefPubMedGoogle Scholar
  23. Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles—an effect of CO2? FEBS Lett 583:3473–3477. CrossRefPubMedGoogle Scholar
  24. Khara E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61:64–68. CrossRefGoogle Scholar
  25. Kieu PN, Aznar A, Segond D, Rigault M, Simond-Côte E, Kunz C, Soulie MC, Expert D, Dellagi A (2012) Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol Plant Pathol 13:816–827. CrossRefPubMedGoogle Scholar
  26. Kobayashi T, Nakanishi Itai R, Senoura T, Oikawa T, Ishimaru Y, Ueda M, Nakanishi H, Nishizawa NK (2016) Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. Plant Mol Biol 91:533–547. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Koen E, Trapet P, Brulé D, Kulik A, Klinguer A, Atauri-Miranda L, Meunier-Prest R, Boni G, Glauser G, Mauch-Mani B, Wendehenne D, Besson-Bard A (2014) β-aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: link with iron homeostasis. Mol Plant Microb Int 27:1226–1240. CrossRefGoogle Scholar
  28. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424. CrossRefPubMedGoogle Scholar
  29. Liu G, Greenshields DL, Sammynaiken R, Hirji RN, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defense responses. J Cell Sci 120:596–605. CrossRefPubMedGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408. CrossRefPubMedGoogle Scholar
  31. López A, Ming DS, Towers GN (2002) Antifungal activity of benzoic acid derivatives from Piper lanceaefolium. J Nat Prod 65:62–64. CrossRefPubMedGoogle Scholar
  32. Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–4399. CrossRefGoogle Scholar
  33. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51:1255–1264. CrossRefPubMedGoogle Scholar
  35. Orozco-Mosqueda MC, Macías-Rodríguez LI, Santoyo G, Farías-Rodríguez R, Valencia-Cantero E (2013a) Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti. Folia Microbiol 58:579–585. CrossRefGoogle Scholar
  36. Orozco-Mosqueda MC, Velázquez-Becerra C, Macías-Rodríguez LI, Santoyo G, Flores-Cortez I, Alfaro-Cuevas R, Valencia-Cantero E (2013b) Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 362:51–66. CrossRefGoogle Scholar
  37. Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci USA 108:7253–7258. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Park ES, Moon WS, Song MJ, Kim MN, Chung KH, Yoon JS (2001) Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeter Biodegr 47:209–214. CrossRefGoogle Scholar
  39. Peña-Uribe CA, García-Pineda E, Beltrán-Peña E, de la Cruz HR (2012) Oligogalacturonides inhibit growth and induce changes in S6K phosphorylation in maize (Zea mays L. var. Chalqueño). Plant Growth Regul 67:151–159. CrossRefGoogle Scholar
  40. Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernandez J, Pelagio-Flores R, López-Bucio J, García-Juárez P, Macías-Rodríguez L (2017) Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 6:2201–2213. CrossRefGoogle Scholar
  41. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. CrossRefPubMedGoogle Scholar
  42. Radhamani R, Kannan R, Rakkiyappan P (2016) Leaf chlorophyll meter readings as an indicator for sugarcane yield under iron deficient typic haplustert. Sugar Tech 18:61–66. CrossRefGoogle Scholar
  43. Raya-González J, Velázquez-Becerra C, Barrera-Ortiz S, López-Bucio J, Valencia-Cantero E (2017)) N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signalling in Arabidopsis thaliana. Protoplasma 254:1399–1410CrossRefPubMedGoogle Scholar
  44. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt MM, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. CrossRefPubMedGoogle Scholar
  48. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918. CrossRefPubMedGoogle Scholar
  49. Sen S, Kundu S, Dutta SK (2016) Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet. Plant Physiol Biochem 108:79–89. CrossRefPubMedGoogle Scholar
  50. Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE. Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77:600–610. CrossRefPubMedGoogle Scholar
  51. Starkey M, Rahme LG (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. ‎Nat Protoc 4:117–124. CrossRefPubMedGoogle Scholar
  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850. CrossRefPubMedGoogle Scholar
  54. Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273. CrossRefGoogle Scholar
  55. Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant soil 339:329–340. CrossRefGoogle Scholar
  56. Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Weisskopf L, Le Bayon RC, Kohler F, Page V, Jossi M, Gobat JM, Aragno M (2008) Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: a one-year microcosm study on lupin and wheat. Soil Biol Biochem 40:1772–1780. CrossRefGoogle Scholar
  58. Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296. CrossRefPubMedGoogle Scholar
  59. Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens. NJN-6. Sci Rep 5:13438. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zamioudis C, Korteland J, Van Pelt JA, Hamersveld M, Dombrowski N, Bai Y, Hanson J, Van Verk MC, Ling HQ, Schulze-Lefert P, Pieterse CM (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J 84:309–322. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. CrossRefPubMedGoogle Scholar
  62. Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. CrossRefPubMedGoogle Scholar
  63. ZhongQun H, Junan Z, HaoRu T, Zhi H (2012) Different vegetables crops in response to allelopathic of hot pepper root exudates. World Appl Sci J 19:1289–1294. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Erasto Hernández-Calderón
    • 1
  • Maria Elizabeth Aviles-Garcia
    • 1
  • Diana Yazmín Castulo-Rubio
    • 1
  • Lourdes Macías-Rodríguez
    • 1
  • Vicente Montejano Ramírez
    • 1
  • Gustavo Santoyo
    • 1
  • José López-Bucio
    • 1
  • Eduardo Valencia-Cantero
    • 1
  1. 1.Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico

Personalised recommendations