Advertisement

Plant Molecular Biology

, Volume 96, Issue 1–2, pp 5–16 | Cite as

A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice

  • Rui Huang
  • Yang Wang
  • Pingrong WangEmail author
  • Chunmei Li
  • Fuliang Xiao
  • Nenggang Chen
  • Na Li
  • Caixia Li
  • Changhui Sun
  • Lihua Li
  • Rongjun Chen
  • Zhengjun Xu
  • Jianqing Zhu
  • Xiaojian DengEmail author
Article

Abstract

Key message

We identified IspF gene through yellow-green leaf mutant 505ys in rice. OsIspF was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. On expression levels of genes in this mutant, OsIspF itself and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase were all up-regulated, however, among eight genes associated with photosynthesis, only psaA, psaN and psbA genes for three reaction center subunits of photosystem obviously changed.

Abstract

Isoprenoids are the most abundant natural compounds in all organisms, which originate from the basic five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, IPP and DMAPP are synthesized through two independent pathways, the mevalonic acid pathway in cytoplasm and the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. The MEP pathway comprises seven enzymatic steps, in which IspF is the fifth enzyme. So far, no IspF gene has been identified in monocotyledonous plants. In this study, we isolated a leaf-color mutant, 505ys, in rice (Oryza sativa). The mutant displayed yellow-green leaf phenotype, reduced level of photosynthetic pigments, and arrested development of chloroplasts. By map-based cloning of this mutant, we identified OsIspF gene (LOC_Os02g45660) showing significant similarity to IspF gene of Arabidopsis, in which a missense mutation occurred in the mutant, resulting in an amino acid change in the encoded protein. OsIspF gene was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. Further, the mutant phenotype of 505ys was complemented by transformation with the wild-type OsIspF gene. Therefore, we successfully identified an IspF gene in monocotyledonous plants. In addition, real-time quantitative RT-PCR implied that a positive regulation could exist between the OsIspF gene and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase. At the same time, it also implied that the individual genes involved in the MEP pathway might differentially regulated expression levels of the genes associated with photosynthesis.

Keywords

Rice (Oryza sativaIsoprenoid biosynthesis IspF gene Yellow-green leaf mutant Map-based cloning 

Abbreviations

MEP

2-C-methyl-d-erythritol 4-phosphate

MVA

Mevalonic acid

IspF

2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase

Chl

Chlorophyll

IPP

Isopentenyl diphosphate

DMAPP

Dimethylallyl diphosphate

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 91335107, 31471473, 31371602 and 31401358).

Author contributions

RH and YW performed most of the research. PW, CML and FX carried out subcellular localization assays. NC, NL, CXL and CS performed some field experiments. LL, RC, ZX and JZ provided technical assistance. PW and RH analyzed the experimental data and drafted the manuscript. PW and XD designed the experiments, supervised the study and revised the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Supplementary material

11103_2017_668_MOESM1_ESM.docx (637 kb)
Supplementary material 1 (DOCX 636 KB)

References

  1. Adam P, Hecht S, Eisenreich W, Kaiser J, Grawert T, Arigoni D, Bacher A, Rohdich F (2002) Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 99:12108–12113CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486CrossRefPubMedGoogle Scholar
  3. Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055CrossRefPubMedGoogle Scholar
  4. Budziszewski GJ, Lewis SP, Glover LW, Reineke J, Jones G, Ziemnik LS, Lonowski J, Nyfeler B, Aux G, Zhou Q, McElver J, Patton DA, Martienssen R, Grossniklaus U, Ma H, Law M, Levin JZ (2001) Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics 159:1765–1778PubMedPubMedCentralGoogle Scholar
  5. Chang WC, Song H, Liu HW, Liu PH (2013) Current development in isprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 17:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen H, Cheng ZJ, Ma XD, Wu H, Liu YL, Zhou KN, Chen YL, Ma WW, Bi JC, Zhang X, Guo XP, Wang JL, Lei CL, Wu FQ, Lin QB, Liu YQ, Liu LL, Jiang L (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32:1855–1867CrossRefPubMedGoogle Scholar
  7. Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426CrossRefPubMedGoogle Scholar
  8. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971CrossRefPubMedGoogle Scholar
  9. Estévez JM, Cantero A, Romero C, Kawaide H, Jiménez LF, Kuzuyama T, Seto H, Kamiya Y, León P (2000) Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-d-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol 124:95–104CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gao S, Lin JA, Liu XF, Deng ZX, Li YJ, Sun XF, Tang KX (2006) Molecular cloning, characterization and functional analysis of a 2C-methyl-d-erythritol 2, 4-cyclodiphosphate synthase gene from Ginkgo biloba. J Biochem Mol Biol 39:502–510PubMedGoogle Scholar
  11. Guevara-García A, Román CS, Arroyo A, Cortés ME, Gutiérrez-Nava ML, León P (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-d-erythritol 4-phosphate pathway. Plant Cell 17:628–643CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gutiérrez-Nava ML, Gillmor CS, Jiménez LF, Guevara-García A, León P (2004) CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiol 135:471–482CrossRefGoogle Scholar
  13. Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842CrossRefPubMedPubMedCentralGoogle Scholar
  14. Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lüttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol-2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hsieh MH, Goodman HM (2005) The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol 138:641–653CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hsieh MH, Goodman HM (2006) Functional evidence for the involvement of Arabidopsis IspF homolog in the nonmevalonate pathway of plastid isoprenoid biosynthesis. Planta 223:779–784CrossRefPubMedGoogle Scholar
  17. Hsieh MH, Chang CY, Hsu SJ, Chen JJ (2008) Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673CrossRefPubMedGoogle Scholar
  18. Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F (2008) Structure, function, and evolution of the PsbP protein family in higher plants. Photosynth Res 98:427–437CrossRefPubMedGoogle Scholar
  19. Jin H, Gong Y, Guo B, Qiu C, Liu D, Miao Z, Sun X, Tang K (2006) Isolation and characterization of a 2C-Methyl-d-Erythritol2,4-Cyclodiphosphate synthase gene from Taxus media. Mol Biol (Mosk) 40:1013–1020CrossRefGoogle Scholar
  20. Kemp LE, Bond CS, Hunter WN (2002) Structure of 2-C-methyl-d-erythritol 2,4- cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development. Proc Natl Acad Sci USA 99:6591–6596CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kemp LE, Alphey MS, Bond CS, Ferguson MAJ, Hecht S, Bacher A, Eisenreich W, Rohdich F, Hunter WN (2005) The identification of isoprenoids that bind in the intersubunit cavity of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase by complementary biophysical methods. Acta Crystallogr Sect D: Biol Crystallogr 61:45–52CrossRefGoogle Scholar
  22. Kim SM, Kuzuyama T, Chang YJ, Kim SU (2006) Cloning and characterization of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (MECS) gene from Ginkgo biloba. Plant Cell Rep 25:829–835CrossRefPubMedGoogle Scholar
  23. Kumar H, Kaul K, Bajpai-Gupta S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492:276–284CrossRefPubMedGoogle Scholar
  24. Kyozuka J, McElroy D, Hayakawa T, Xie Y, Wu R, Shimamoto K (1993) Light-regulated and cell-specific expression of tomato rbcS-gusA and rice rbcS-gusA fusion genes in transgenic rice. Plant Physiol 102:991–1000CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li CM, Hu Y, Huang R, Ma XZ, Wang Y, Liao TT, Zhong P, Xiao FL, Sun CH, Xu ZJ, Deng XJ, Wang PR (2015) Mutation of FdC2 gene encoding a ferreoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Sci 238:127–134CrossRefPubMedGoogle Scholar
  26. Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–592CrossRefGoogle Scholar
  27. Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad USA 95:2105–2110CrossRefGoogle Scholar
  28. Lüttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr CA, Fellermeier M, Sagner S, Zenk MH, Bacher A, Eisenreich W (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-d-erythritol. Proc Natl Acad Sci USA 97:1062–1067CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ma XZ, Sun XQ, Li CM, Huang R, Sun CH, Wang Y, Xiao FL, Wang Q, Chen PR, Ma FR, Zhang K, Wang PR, Deng XJ (2017) Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiol Biochem 111:1–9CrossRefPubMedGoogle Scholar
  30. Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658CrossRefPubMedGoogle Scholar
  31. Matsuoka M (1990) Classification and characterization of cDNA that encodes the light-harvesting chlorophyll a/b binding protein of photosystem II from rice. Plant Cell Physiol 31:519–526Google Scholar
  32. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L). DNA Res 9:199–207CrossRefPubMedGoogle Scholar
  33. Ni S, Robinson H, Marsing GC, Bussiere DE, Kennedy MA (2004) Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase from Shewanella oneidensis at 1.6 Å: identification of farnesyl pyrophosphate trapped in a hydrophobic cavity. Acta Crystallogr Sect D: Biol Crystallogr 60:1949–1957CrossRefGoogle Scholar
  34. Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623CrossRefPubMedGoogle Scholar
  35. Pulido P, Perello C, Rodríguez-Concepción M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967CrossRefPubMedGoogle Scholar
  36. Querol J, Campos N, Imperial S, Boronat A, Rodríguez-Concepción M (2002) Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett 514:343–346CrossRefPubMedGoogle Scholar
  37. Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089CrossRefPubMedGoogle Scholar
  38. Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A, Zenk MH (1999) Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96:11758–11763CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-d-erythritol synthase of Arabidopsis thaliana. Proc Natl Acad Sci USA 97:6451–6456CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Gräwert T, Amslinger S, Eisenreich W, Bacher A, Arigoni D (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789CrossRefPubMedGoogle Scholar
  44. Schwender J, Müller C, Zeidler J, Lichtenthaler HK (1999) Cloning and heterologous expression of a cDNA encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett 455:140–144CrossRefPubMedGoogle Scholar
  45. Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862CrossRefPubMedPubMedCentralGoogle Scholar
  46. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884CrossRefPubMedPubMedCentralGoogle Scholar
  47. Veau B, Courtois M, Oudin A, Chénieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517:159–163CrossRefPubMedGoogle Scholar
  48. Wang PR, Gao JX, Wan CM, Zhang FT, Xu ZJ, Huang XQ, Sun XJ, Deng XJ (2010) Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xiao YM, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K (2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149:1525–1535CrossRefPubMedGoogle Scholar
  51. Zhang Y, Su JB, Duan S, Ao Y, Dai JR, Liu J, Wang P, Li YG, Liu B, Feng DR, Wang JF, Wang HB (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang SR, Jiang X, Wang P, Wu D, Wang QH, Hou YX (2014) EaIspF1, essential enzyme in isoprenoid biosynthesis from Eupatorium adenophorum, reveals a novel role in light acclimation. J Integr Agric 13(5):1024–1035CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Rice Research InstituteSichuan Agricultural UniversityChengduChina

Personalised recommendations