Plant Molecular Biology

, Volume 95, Issue 4–5, pp 411–423 | Cite as

Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta)

  • Balkrishna A. Shinde
  • Bhushan B. Dholakia
  • Khalid Hussain
  • Sayantan Panda
  • Sagit Meir
  • Ilana Rogachev
  • Asaph Aharoni
  • Ashok P. GiriEmail author
  • Avinash C. KambleEmail author


Key message

Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance.


Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Early blight Metabolomics MYB SGA Solanum arcanum Tomato WRKY 



BAS and ACK are thankful to University Grant Commission (UGC) and Council of Scientific and Industrial Research (CSIR), New Delhi, India for senior research fellowship and financial support [60(0101)/11/EMR-II] to Savitribai Phule Pune University, respectively, along-with funding under XII 5 year plan project BSC0107 to CSIR-National Chemical Laboratory. Authors thank Dr. Oren Tzfadia (Ghent University, Belgium) for co-expression analysis.

Author contributions

BAS, APG and ACK planned and designed the study. BAS performed majority of the experiments. SM, SP and IR acquired and analyzed the metabolic data. KH carried out transgenic and lignin quantification assay. AA provided tomato transcriptomic data and helped in analysis of it. BAS and BBD analyzed the data, prepared the figures, tables and wrote the manuscript. APG, ACK and AA corrected the manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

11103_2017_660_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1318 KB)


  1. Agrios GN (2005) Plant pathology, 5th edn. Academic Press, New YorkGoogle Scholar
  2. Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant 132:117–135. doi: 10.1111/j.1399-3054.2007.01001.x PubMedGoogle Scholar
  3. Arneson PA, Durbin RD (1968) Studies on the mode of action of tomatine as a fungitoxic agent. Plant Physiol 43:683–686CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY (2013) Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): characterization of flax miRNA genes. Planta 237:1149–1161. doi: 10.1007/s00425-012-1833-5 CrossRefPubMedGoogle Scholar
  5. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159. doi: 10.1093/jxb/ern290.8 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonello P, Storer AJ, Gordon TR, Wood DL, Heller W (2003) Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark-beetle-associated fungi. J Chem Ecol 29:1167–1182. doi: 10.1023/A:1023833707382 CrossRefPubMedGoogle Scholar
  7. Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:2–5CrossRefGoogle Scholar
  8. Boudet AM, Lapierre C, Grimapettenati J (1995) Biochemistry and molecular-biology of lignification. New Phytol 129:203–236. doi: 10.1111/j.1469-8137.1995.tb04292.x CrossRefGoogle Scholar
  9. Chaerani R, Groenwold R, Stam P, Voorrips RE (2007) Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. J Gen Plant Pathol 73:96–103. doi: 10.1007/s10327-006-0337-1 CrossRefGoogle Scholar
  10. Cho K, Kim Y, Wi SJ, Seo JB, Kwon J, Chung JH, Park KY, Nam MH (2012) Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. J Agric Food Chem 60:11015–11028CrossRefPubMedGoogle Scholar
  11. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390. doi: 10.1046/j.1364-3703.2002.00131.x CrossRefPubMedGoogle Scholar
  12. Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118:259–274. doi: 10.1007/s10658-007-9144-6 CrossRefGoogle Scholar
  13. Funnell-Harris DL, Pedersen JF, Sattler SE (2010) Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum. Phytopathology 100:671–681. doi: 10.1094/PHYTO-100-7-0671 CrossRefPubMedGoogle Scholar
  14. Grunewald W, De Smet I, Lewis DR, Löfke C, Jansen L, Goeminne G, Vanden Bosschea R, Karimi M, De Rybela B, Vanholmea B, Teichmannf T, Boerjana W, Van Montagub MCE, Gheysenc G, Mudaye GK, Frimla J, Beeckman T (2011) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on fl avonol biosynthesis. Proc Natl Acad Sci USA 109:1554–1559. doi: 10.1073/pnas.1121134109 CrossRefGoogle Scholar
  15. Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat qtl (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7:1–15. doi: 10.1371/journal.pone.0040695 CrossRefGoogle Scholar
  16. Heinig U, Aharoni A (2014) Analysis of steroidal alkaloids and saponins in Solanaceae plant extracts using UPLC-qTOF mass spectrometry. In: Rodríguez-Concepción M (ed) Plant isoprenoids. Methods in molecular biology (methods and protocols), vol 1153. Humana Press, New York, pp 171–185Google Scholar
  17. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y-H, Yu J-Q, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538. doi: 10.1104/pp.110.157370 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R, Prusky D, Burdman S, Beekwilder J, Aharoni A (2011) GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23:4507–4525. doi: 10.1105/tpc.111.088732 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops Is mediated by clustered genes. Science 341:175–179. doi: 10.1021/jf061471t CrossRefPubMedGoogle Scholar
  20. Ito SI, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T (2004) Tomatidine and lycotetraose, hydrolysis products of α-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett 571:31–34. doi: 10.1016/j.febslet.2004.06.053 CrossRefPubMedGoogle Scholar
  21. Kim K, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192. doi: 10.1104/pp.106.082487 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kumar Y, Dholakia BB, Panigrahi P, Kadoo NY, Giri AP, Gupta VS (2015) Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry 116:120–129. doi: 10.1016/j.phytochem.2015.04.001 CrossRefPubMedGoogle Scholar
  23. Lattanzio V, Lattanzio VMT, Cardinali A, Amendola V (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost, Trivandrum, pp 23–67Google Scholar
  24. Levée V, Major I, Levasseur C, Tremblay L, MacKay J, Séguin A (2009) Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. New Phytol 184:48–70. doi: 10.1111/j.1469-8137.2009.02955.x CrossRefPubMedGoogle Scholar
  25. Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708. doi: 10.1016/j.molp.2015.03.012 CrossRefPubMedGoogle Scholar
  26. McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, Luthe DS, Bridges SM, Burgess SC (2006) AgBase: a functional genomics resource for agriculture. BMC Genom 7:1–13. doi: 10.1186/1471-2164-7-229 CrossRefGoogle Scholar
  27. Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724PubMedPubMedCentralGoogle Scholar
  28. Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M (2015) NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci 6:1–18. doi: 10.3389/fpls.2015.00288 CrossRefGoogle Scholar
  29. Naoumkina MA, He X, Dixon RA (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol 8:132. doi: 10.1186/1471-2229-8-132 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oleszek W, Shannon S, Robinson R (1986) Steroidal alkaloids of Solanum lycopersicoides. Acta Soc Bot Pol 55:653–657CrossRefGoogle Scholar
  31. Osbourn AE (1996a) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831. doi: 10.1105/tpc.8.10.1821 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Osbourn AE (1996b) Saponins and plant defence—a soap story. Trends Plant Sci 1:4–9. doi: 10.1016/S1360-1385(96)80016-1 CrossRefGoogle Scholar
  33. Osbourn AE (1999) Antimicrobial phytoprotectants and fungal pathogens: a commentary. Fungal Genet Biol 26:163–168. doi: 10.1006/fgbi.1999.1133 CrossRefPubMedGoogle Scholar
  34. Pandey KK, Pandey PK, Kalloo G, Banerjee MK (2003) Resistance to early blight of tomato with respect to various parameters of disease epidemics. J Gen Plant Pathol 69:364–371. doi: 10.1007/s10327-003-0074-7 CrossRefGoogle Scholar
  35. Pushpa D, Yogendra KN, Gunnaiah R, Kushalappa AC, Murphy A (2014) Identification of late blight resistance-related metabolites and genes in potato through nontargeted metabolomics. Plant Mol Biol Rep 32:584–595. doi: 10.1007/s11105-013-0665-1 CrossRefGoogle Scholar
  36. Ruel K, Berrio-Sierra J, Derikvand MM, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau JP (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113. doi: 10.1111/j.1469-8137.2009.02951.x CrossRefPubMedGoogle Scholar
  37. Saha P, Das S (2012) Assessment of yield loss due to early blight (Alternaria solani) in tomato. Indian J Plant Prot 40:195–198Google Scholar
  38. Sattler SE, Funnell-Harris DL (2013) Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front Plant Sci 4:1–8. doi: 10.3389/fpls.2013.00070 CrossRefGoogle Scholar
  39. Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithöfer A, Becker A, Kogel K-H, Schikora A (2014) N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–2723. doi: 10.1105/tpc.114.126763 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. doi: 10.1038/nprot.2008.73 CrossRefPubMedGoogle Scholar
  41. Shahaf N, Rogachev I, Heinig U, Meir S, Malitsky S, Battat M, Wyner H, Zheng S, Wehrens R, Aharoni A (2016) The WEIZMASS spectral library for high-confidence metabolite identification. Nat Commun 7:1–13. doi: 10.1038/ncomms12423 CrossRefGoogle Scholar
  42. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Smith CA, Want EJ, Maille GO, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. doi: 10.1021/ac051437y CrossRefPubMedGoogle Scholar
  44. Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J (2016) Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Mol Plant 9:662–681. doi: 10.1016/j.molp.2016.01.005 CrossRefPubMedGoogle Scholar
  45. Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–575. doi: 10.1038/nature14099 CrossRefPubMedGoogle Scholar
  46. Tenenboim H, Brotman Y (2016) Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends Plant Sci 21:781–791. doi: 10.1016/j.tplants.2016.04.009 CrossRefPubMedGoogle Scholar
  47. Tronchet M, BalaguÉ C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92. doi: 10.1111/j.1364-3703.2009.00578.x CrossRefPubMedGoogle Scholar
  48. Varbanova M, Porter K, Lu F, Ralph J, Hammerschmidt R, Jones AD, Day B (2011) Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber. Plant Physiol 157:1056–1066. doi: 10.1104/pp.111.184358 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109. doi: 10.1111/j.1469-8137.2010.03572.x CrossRefPubMedGoogle Scholar
  50. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0––making metabolomics more meaningful. Nucleic Acids Res 1:1–7. doi: 10.1093/nar/gkv380 Google Scholar
  51. Yang W, Xu X, Li Y, Wang Y, Li M, Wang Y, Ding X, Chu Z (2016) Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE 11:1–15. doi: 10.1371/journal.pone.0146910 Google Scholar
  52. Yogendra KN, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa KA, Duggavathi R, Kushalappa AC (2015) Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. J Exp Bot 66:7377–7389. doi: 10.1093/jxb/erv434 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782. doi: 10.1105/tpc.108.061325 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Balkrishna A. Shinde
    • 1
    • 2
    • 3
  • Bhushan B. Dholakia
    • 2
  • Khalid Hussain
    • 1
  • Sayantan Panda
    • 1
    • 3
  • Sagit Meir
    • 3
  • Ilana Rogachev
    • 3
  • Asaph Aharoni
    • 3
  • Ashok P. Giri
    • 2
    Email author
  • Avinash C. Kamble
    • 1
    Email author
  1. 1.Department of BotanySavitribai Phule Pune UniversityPuneIndia
  2. 2.Division of Biochemical Sciences, Plant Molecular Biology UnitCSIR-National Chemical LaboratoryPuneIndia
  3. 3.Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations