Plant Molecular Biology

, Volume 95, Issue 1–2, pp 17–32 | Cite as

Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.)

  • Amparo Andrés-Bordería
  • Fernando Andrés
  • Antoni Garcia-Molina
  • Ana Perea-García
  • Concha Domingo
  • Sergi Puig
  • Lola PeñarrubiaEmail author


Key message

Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains.


Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.


Copper Iron Metal transport Oryza sativa COPT1 OsIRO2 



This work has been supported by grants BIO2011-24848 and BIO2014-56298-P from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union. We acknowledge Àngela Carrió-Seguí (Universitat de València) and Kiranmayee Pamidimukkala for their technical help with this manuscript. We also acknowledge the Servei Central d’Instrumentació Científica (Universitat Jaume I) and SCSIE (Universitat de València) for the ICP-MS and atomic absorption spectrophotometry determinations and greenhouse facilities.

Author contributions

SP and LP conceived the idea and wrote the manuscript. AA-B, FA and CD perform the rice microarray and transformation experiments. AA-B, AG-M and AP-G perform the physiological and molecular experiments in rice plants.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2017_622_MOESM1_ESM.pdf (358 kb)
Fig. S1 Hormone concentration in O. sativa plants. (a) ABA concentration of the 8 day-old seedlings of the WT plants grown under severe deficiency (BCS 100 µM) or sufficiency (10 µM CuSO4) of Cu. (b) JA concentration of the 8 day-old seedlings of the WT plants grown under same conditions as in (a). Represented values are the mean±SD of n=3 replicates. Samples with a common letter are not significantly different (p-value >0.05). Fig. S2 Gene expression in the WT plants with different Cu status. (a) Relative gene expression of OsCOPT5, OsCOPT7, OsATX1 of the WT 8-day-old seedlings grown on control conditions (0 µM CuSO4) and excess (75 µM CuSO4). (b) Relative gene expression of OsNAS1, NAAT1, OsMt1f of the WT 8-day-old seedlings shoots grown in same conditions as in (a). Expression values are relative to the values of seedlings grown under Cu deficiency conditions. Represented values are the mean±SD of n=3 replicates. Samples with a common letter are not significantly different (p-value>0.05). Fig. S3 Gene expression in the WT plants with different Cu status. (a) Relative gene expression of OsFSD1.1, OsFSD1.2, OsCDGSH of the WT 8-day-old seedlings shoots grown on a Cu scale from control conditions (0 µM CuSO4) to excess (75 µM CuSO4). (b) Relative gene expression of OsHRZ1 and OsHRZ2 of the WT 8-day-old seedlings grown in same conditions as in (a). Expression values are relative to the values of seedlings grown under Cu deficiency conditions. Represented values are the mean±SD of n=3 replicates. Samples with a common letter are not significantly different (p-value>0.05). Fig. S4 The SOD gene expression of the WT and AtCOPT1 overexpressing rice plants. Relative expression of genes OsCSD1.1, OsCSD1.2, OsCSD2 (encoding Cu, Zn SODs), OsFSD1.1 and OsFSD1.2 (encoding Fe SODs) of the WT and C1OE 8-day-old seedling shoots grown under control conditions (0 μM CuSO4) and excess (75 μM CuSO4). Expression values are relative to the WT seedlings grown under Cu deficiency. Represented values are the mean±SD of n=3 replicates. Fig. S5 Characterization of the WT and AtCOPT1 overexpressing rice plants grown in hydroponic cultures. (a) Representative photographs of 1 month-old plants. The WT and C1OE-1 plants were grown in different hydroponic cultures under different Cu and Fe conditions: Cu and Fe sufficiency (+Cu+Fe) and double Cu and Fe deficiency (-Cu-Fe). (b) Leaf chlorophyll content. Values of chlorophyll per gram of fresh weight of the WT and C1OE-1 1 month-old plants grown under the same conditions as in (a). Represented values are the mean±SD of n=3 replicates. Samples with a common letter are not significantly different (p-value >0.05). Fig. S6 Metal concentration of the WT and AtCOPT1 overexpressing rice plants grown in soil. (a) Cu concentration in young and old leaves of the WT and C1OE from 4 and 5 month‐old plants grown in soil (b) Fe concentration of the WT and C1OE plants grown under the same conditions as in (a). Represented values are the mean±SD of n=3 replicates. Samples with a common letter are not significantly different (p‐value> 0.05). Fig. S7 Perl’s staining of the brown rice grain of the WT and C1OE plants. Seeds were germinated for 3 days in ½MS and photographed after Perl’s stained.


  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945. doi: 10.1074/jbc.M801406200 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andrés-Colás N, Bodecker JR, Puig S, Peñarrubia L, Pilon M (2005) AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett 579:2307–2312. doi: 10.1016/j.febslet.2005.03.025 CrossRefPubMedGoogle Scholar
  3. Andrés F, Galbraith DW, Talón M, Domingo C (2009) Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol 151:681–690. doi: 10.1104/pp.109.139097 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrés-Colás N, Perea-García A, Puig S, Peñarrubia L (2010) Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol 153:170–184. doi: 10.1104/pp.110.153676 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Andrés-Colás N, Perea-García A, Mayo de Andrés S, Garcia-Molina A, Dorcey E, Rodríguez-Navarro S, Pérez-Amador MA, Puig S, Peñarrubia L, Mayo de Andres S, García-Molina A, Dorcey E, Rodriguez-Navarro S, Perez-Amador MA, Puig S, Peñarrubia L (2013) Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings. Metallomics 5:1234–1246. doi: 10.1039/c3mt00025g CrossRefPubMedGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. doi: 10.2307/2346101 Google Scholar
  7. Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761. doi: 10.1105/tpc.111.090431 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnol Adv 31:50–57. doi: 10.1016/j.biotechadv.2012.02.001 CrossRefPubMedGoogle Scholar
  9. Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90:207–215. doi: 10.1007/s11103-015-0404-0 CrossRefPubMedGoogle Scholar
  10. Briat JF (1996) Roles of ferritin in plants. J Plant Nutr 19:1331–1342. doi: 10.1080/01904169609365202 CrossRefGoogle Scholar
  11. Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819. doi: 10.1104/pp.110.161109 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412. doi: 10.1105/tpc.104.024315 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crichton RR, Pierre JL (2001) Old iron, young copper: from mars to venus. Biometals 14:99–112. doi: 10.1023/A:1016710810701 CrossRefPubMedGoogle Scholar
  14. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat.Google Scholar
  15. Garcia-Molina A, Andrés-Colás N, Perea-García A, Del Valle-Tascõn S, Peñarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65:848–860. doi: 10.1111/j.1365-313X.2010.04472.x CrossRefPubMedGoogle Scholar
  16. Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, Huijser P, Peñarrubia L, Puig S (2013) The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant Cell Physiol 54:1378–1390. doi: 10.1093/pcp/pct088 CrossRefPubMedGoogle Scholar
  17. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286. doi: 10.1038/7029 CrossRefPubMedGoogle Scholar
  18. Gulec S, Collins JF (2014) Molecular mediators governing iron-copper interactions. Annu Rev Nutr 34:95–116. doi: 10.1146/annurev-nutr-071812-161215 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232. doi: 10.1111/j.1438-8677.2010.00398.x CrossRefPubMedGoogle Scholar
  20. Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549. doi: 10.1007/s00425-004-1376-5 CrossRefPubMedGoogle Scholar
  21. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi: 10.1046/j.1365-313X.1994.6020271.x CrossRefPubMedGoogle Scholar
  22. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346. doi: 10.1111/j.1365-313X.2005.02624.x CrossRefPubMedGoogle Scholar
  23. Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390. doi: 10.1111/j.1365-313X.2010.04158.x CrossRefPubMedGoogle Scholar
  24. Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476. doi: 10.1371/journal.pone.0024476 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. doi: 10.1146/annurev-arplant-042811-105522 CrossRefPubMedGoogle Scholar
  26. Kobayashi T, Nishizawa NK (2014) Iron sensors and signals in response to iron deficiency. Plant Sci 224:36–43. doi: 10.1016/j.plantsci.2014.04.002 CrossRefPubMedGoogle Scholar
  27. Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK (2012) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69:81–91. doi: 10.1111/j.1365-313X.2011.04772.x CrossRefPubMedGoogle Scholar
  28. Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding Haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792. doi: 10.1038/ncomms3792 PubMedPubMedCentralGoogle Scholar
  29. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424. doi: 10.1111/j.1365-313X.2004.02146.x CrossRefPubMedGoogle Scholar
  30. Lee SSJ, Jeon US, Lee SSJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci 106:22014–22019. doi: 10.1073/pnas.0910950106 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leszczyszyn OI, Imam HT, Blindauer C a (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169. doi: 10.1039/c3mt00072a CrossRefPubMedGoogle Scholar
  32. Marschner P (2012) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  33. Mostofa MG, Seraj Z, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386. doi: 10.1007/s00709-014-0639-7 CrossRefPubMedGoogle Scholar
  34. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:493–497CrossRefGoogle Scholar
  35. Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878. doi: 10.1093/jxb/erl054 CrossRefPubMedGoogle Scholar
  36. Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377. doi: 10.1111/j.1365-313X.2007.03149.x CrossRefPubMedGoogle Scholar
  37. Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605. doi: 10.1007/s11103-011-9752-6 CrossRefPubMedGoogle Scholar
  38. Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L, Garcia R, Dueñas C, Poncio MA, Balindong J, Manzanilla M, Montecillo F, Zaidem M, Barry G, Hervé P, Shou H, Slamet-Loedin IH (2014) Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol Breed 33:23–37. doi: 10.1007/s11032-013-9931-z CrossRefPubMedGoogle Scholar
  39. Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A (2015) Temporal aspects of copper homeostasis and its crosstalk with hormones. Front Plant Sci 6:1–18. doi: 10.3389/fpls.2015.00255 CrossRefGoogle Scholar
  40. Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L (2013) Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling. Plant Physiol 162:180–194. doi: 10.1104/pp.112.212407 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. doi: 10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Puig S (2014) Function and regulation of the plant COPT family of high-affinity copper transport proteins. Adv Bot. doi: 10.1155/2014/476917 Google Scholar
  43. Puig S, Peñarrubia L (2009) Placing metal micronutrients in context: transport and distribution in plants. Curr Opin Plant Biol 12:299–306. doi: 10.1016/j.pbi.2009.04.008 CrossRefPubMedGoogle Scholar
  44. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180. doi: 10.1016/S1367-5931(02)00298-3 CrossRefPubMedGoogle Scholar
  45. Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: Responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290. doi: 10.1111/j.1365-3040.2007.01642.x CrossRefPubMedGoogle Scholar
  46. Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal 19:919–932. doi: 10.1089/ars.2012.5084 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855. doi: 10.1111/pce.12020 CrossRefPubMedGoogle Scholar
  48. Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587. doi: 10.1023/a:1022345507112 CrossRefPubMedGoogle Scholar
  49. Smyth GK (2005) Limma: linear models for microarray data. Springer, New YorkGoogle Scholar
  50. Sperotto RA, Ricachenevsky FK, Waldow V de A, Fett JP (2012) Iron biofortification in rice: It’s a long way to the top. Plant Sci 190:24–39. doi: 10.1016/j.plantsci.2012.03.004 CrossRefPubMedGoogle Scholar
  51. Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2007) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601. doi: 10.1104/pp.107.108183 CrossRefPubMedGoogle Scholar
  52. Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M (2013) Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative. Lancet Glob Heal 1:e16–e25. doi: 10.1016/S2214-109X(13)70001-9 CrossRefGoogle Scholar
  53. Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792. doi: 10.1038/srep19792 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK (2009) 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiol 50:48–57. doi: 10.1093/pcp/pcn192 CrossRefPubMedGoogle Scholar
  55. von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114. doi: 10.1104/pp.119.3.1107 CrossRefGoogle Scholar
  56. Waters BM, Armbrust LC (2013) Optimal copper supply is required for normal plant iron deficiency responses. Plant Signal Behav 8:e26611. doi: 10.4161/psb.26611 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63:5903–5918. doi: 10.1093/jxb/ers239 CrossRefPubMedPubMedCentralGoogle Scholar
  58. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x CrossRefPubMedGoogle Scholar
  59. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA Promoter binding Protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361. doi: 10.1105/tpc.108.060137 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ye Y, Yuan J, Chang X, Yang M, Zhang L, Lu K, Lian X (2015) The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice. PLoS One 10:e0126186. doi: 10.1371/journal.pone.0126186 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yruela I (2013) Transition metals in plant photosynthesis. Metallomics 5:1090–1109. doi: 10.1039/c3mt00086a CrossRefPubMedGoogle Scholar
  62. Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–3176. doi: 10.1105/tpc.110.078022 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11:69–80. doi: 10.1186/1471-2229-11-69 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Amparo Andrés-Bordería
    • 1
    • 2
  • Fernando Andrés
    • 3
    • 4
  • Antoni Garcia-Molina
    • 1
    • 5
  • Ana Perea-García
    • 1
    • 6
  • Concha Domingo
    • 3
  • Sergi Puig
    • 1
  • Lola Peñarrubia
    • 1
    • 2
    Email author
  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias BiológicasUniversitat de ValènciaValenciaSpain
  2. 2.Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED)Universitat de ValènciaValenciaSpain
  3. 3.Instituto Valenciano de Investigaciones AgrariasValenciaSpain
  4. 4.INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces FruitièresMontpellierFrance
  5. 5.Department of Biology I. Plant Molecular Biology (Botany)Ludwig Maximilian University MunichMunichGermany
  6. 6.Departamento de BiotecnologíaInstituto de Agroquímica y Tecnología de Alimentos (IATA), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC)ValenciaSpain

Personalised recommendations