Advertisement

Plant Molecular Biology

, Volume 94, Issue 4–5, pp 453–467 | Cite as

Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens

  • Zhenhong Jiang
  • Fei He
  • Ziding ZhangEmail author
Article

Abstract

Key message

Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens.

Abstract

Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study will deepen our understanding of plant metabolism in plant immunity and provide new insights into disease-resistant crop improvement.

Keywords

Biotic stresses Gene set enrichment analysis (GSEA) Defense response Large-scale transcriptional data Metabolic pathways 

Notes

Acknowledgements

We thank Dr. Yuan Zhou at Peking University for helpful discussion on this topic.

Funding

This work was supported by Beijing Natural Science Foundation (5172021) and the National Natural Science Foundation of China (31471249).

Author contributions

ZJ designed the study, performed the analyses and drafted the manuscript. ZZ and FH revised the manuscript. ZZ supervised the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11103_2017_617_MOESM1_ESM.docx (394 kb)
Supplementary material 1 (DOCX 393 KB)
11103_2017_617_MOESM2_ESM.xls (50 kb)
Supplementary material 2 (XLS 50 KB)
11103_2017_617_MOESM3_ESM.xls (5.3 mb)
Supplementary material 3 (XLS 5384 KB)
11103_2017_617_MOESM4_ESM.xls (26 kb)
Supplementary material 4 (XLS 25 KB)
11103_2017_617_MOESM5_ESM.xls (188 kb)
Supplementary material 5 (XLS 187 KB)
11103_2017_617_MOESM6_ESM.xls (526 kb)
Supplementary material 6 (XLS 526 KB)
11103_2017_617_MOESM7_ESM.xls (35 kb)
Supplementary material 7 (XLS 35 KB)
11103_2017_617_MOESM8_ESM.xls (788 kb)
Supplementary material 8 (XLS 788 KB)
11103_2017_617_MOESM9_ESM.xls (112 kb)
Supplementary material 9 (XLS 112 KB)

References

  1. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90. doi: 10.1016/j.tplants.2011.11.002 CrossRefPubMedGoogle Scholar
  2. Asano T, Kimura M, Nishiuchi T (2012) The defense response in Arabidopsis thaliana against Fusarium sporotrichioides. Proteome Sci 10:61. doi: 10.1186/1477-5956-10-61 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454. doi: 10.1104/pp.108.121038 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barrett T et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. doi: 10.1093/nar/gks1193 CrossRefPubMedGoogle Scholar
  5. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633. doi: 10.1111/j.1469-8137.1994.tb02968.x CrossRefGoogle Scholar
  6. Bilgin DD, Zavala JA, Zhu JIN, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613. doi: 10.1111/j.1365-3040.2010.02167.x CrossRefPubMedGoogle Scholar
  7. Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant Microbe Interact 22:487–497. doi: 10.1094/mpmi-22-5-0487 CrossRefPubMedGoogle Scholar
  8. Brazma A et al (2003) ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31:68–71. doi: 10.1093/nar/gkg091 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choi C, Park YH, Kwon SI, Yun C, Ahn I, Park SR, Hwang D-J (2014) Identification of AtWRKY75 as a transcriptional regulator in the defense response to Pcc through the screening of Arabidopsis activation-tagged lines. Plant Biotechnol Rep 8:183–192. doi: 10.1007/s11816-013-0308-x CrossRefGoogle Scholar
  10. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101. doi: 10.1126/science.1164627 CrossRefPubMedGoogle Scholar
  11. Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta 1757:730–741. doi: 10.1016/j.bbabio.2006.03.009 CrossRefPubMedGoogle Scholar
  12. Consortium GO (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261. doi: 10.1093/nar/gkh036 CrossRefGoogle Scholar
  13. De Coninck B et al (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443. doi: 10.1111/j.1365-3040.2004.01281.x CrossRefGoogle Scholar
  14. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37. doi: 10.1023/A:1020780022549 CrossRefPubMedGoogle Scholar
  15. Dong X, Jiang Z, Peng Y-L, Zhang Z (2015) Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis. Plant Physiol 167:1158–1185. doi: 10.1104/pp.114.254292 CrossRefGoogle Scholar
  16. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868CrossRefPubMedPubMedCentralGoogle Scholar
  17. El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987. doi: 10.3390/md8040968 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78. doi: 10.1016/j.tplants.2004.12.006 CrossRefPubMedGoogle Scholar
  19. Faith JJ et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8. doi: 10.1371/journal.pbio.0050008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fan M et al. (2014) The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern–triggered immunity in Arabidopsis. Plant Cell. doi: 10.1105/tpc.113.121111 Google Scholar
  21. Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205. doi: 10.1046/j.1365-313X.2003.01794.x CrossRefPubMedGoogle Scholar
  22. Frerigmann H, Glawischnig E, Gigolashvili T (2015) The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. Front Plant Sci 6:654. doi: 10.3389/fpls.2015.00654 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. doi: 10.1093/bioinformatics/btg405 CrossRefPubMedGoogle Scholar
  24. Ghanta S, Chattopadhyay S (2011) Glutathione as a signaling molecule: another challenge to pathogens. Plant Signal Behav 6:783–788. doi: 10.4161/psb.6.6.15147 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Flugge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901. doi: 10.1111/j.1365-313X.2007.03099.x CrossRefPubMedGoogle Scholar
  26. Grant JJ, Yun BW, Loake GJ (2000) Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582. doi: 10.1046/j.1365-313x.2000.00902.x CrossRefPubMedGoogle Scholar
  27. Hanqing F, Kun S, Mingquan L, Hongyu L, Xin L, Yan L, Yifeng W (2010) The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses. Mol Plant Pathol 11:429–440. doi: 10.1111/j.1364-3703.2010.00615.x CrossRefPubMedGoogle Scholar
  28. He F, Yoo S, Wang D, Kumari S, Gerstein M, Ware D, Maslov S (2016) Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis. Plant J 86:472–480. doi: 10.1111/tpj.13175 CrossRefPubMedGoogle Scholar
  29. Heilmann I, Mekhedov S, King B, Browse J, Shanklin J (2004) Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol ∆7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol 136:4237–4245. doi: 10.1104/pp.104.052951 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hok S, Danchin EG, Allasia V, Panabieres F, Attard A, Keller H (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ 34:1944–1957. doi: 10.1111/j.1365-3040.2011.02390.x CrossRefPubMedGoogle Scholar
  31. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825–2827. doi: 10.1093/bioinformatics/btl476 CrossRefPubMedGoogle Scholar
  32. Hu J et al (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol 31:522–529. doi: 10.1038/nbt.2530 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hull R (2002) Virus Infection, Plant. In: Encyclopedia of Molecular Biology. Wiley, Hoboken. doi: 10.1002/047120918X.emb1662 Google Scholar
  34. Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287. doi: 10.1093/mp/ssu049 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiang Z, Dong X, Li Z-G, He F, Zhang Z (2016a) Differential coexpression analysis reveals extensive rewiring of Arabidopsis gene coexpression in response to Pseudomonas syringae infection. Sci Rep 6:35064. doi: 10.1038/srep35064 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jiang Z, Dong X, Zhang Z (2016b) Network-based comparative analysis of Arabidopsis immune responses to Golovinomyces orontii and Botrytis cinerea infections. Sci Rep 6:19149. doi: 10.1038/srep19149 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187. doi: 10.1093/nar/gkt1016 CrossRefPubMedGoogle Scholar
  38. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 CrossRefPubMedGoogle Scholar
  39. Kai K et al (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55:989–999. doi: 10.1111/j.1365-313X.2008.03568.x CrossRefPubMedGoogle Scholar
  40. Kilian J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363. doi: 10.1111/j.1365-313X.2007.03052.x CrossRefPubMedGoogle Scholar
  41. Kim S-J et al (2004a) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A 101:1455–1460. doi: 10.1073/pnas.0307987100 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kim SJ et al (2004b) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A 101:1455–1460. doi: 10.1073/pnas.0307987100 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kliebenstein DJ (2012) Plant defense compounds: systems approaches to metabolic analysis. Annu Rev Phytopathol 50:155–173. doi: 10.1146/annurev-phyto-081211-172950 CrossRefPubMedGoogle Scholar
  44. Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36. doi: 10.1111/j.1365-313X.2005.02508.x CrossRefPubMedGoogle Scholar
  45. La Camera S et al (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481. doi: 10.1094/MPMI-22-4-0469 CrossRefPubMedGoogle Scholar
  46. Less H, Angelovici R, Tzin V, Galili G (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23:1264–1271. doi: 10.1105/tpc.110.082867 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li H, Zhang Z (2016) Systems understanding of plant-pathogen interactions through genome-wide protein-protein interaction networks. Front Agr Sci Eng 3:102–112. doi: 10.15302/j-fase-2016100 CrossRefGoogle Scholar
  48. Lohman KN, Gan S, John MC, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322–328. doi: 10.1111/j.1399-3054.1994.tb05343.x CrossRefGoogle Scholar
  49. Lv Q, Cheng R, Shi T (2014) Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions. BMC Plant Biol 14:180. doi: 10.1186/1471-2229-14-180 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21:3448–3449. doi: 10.1093/bioinformatics/bti551 CrossRefPubMedGoogle Scholar
  51. Malinovsky FG et al (2014) Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression interacting with increased leaf inclination binding bHLH1. Plant Physiol 164:1443–1455. doi: 10.1104/pp.113.234625 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Margis-Pinheiro M, Martin C, Didierjean L, Burkard G (1993) Differential expression of bean chitinase genes by virus infection, chemical treatment and UV irradiation. Plant Mol Biol 22:659–668CrossRefPubMedGoogle Scholar
  53. Meng S, Torto-Alalibo T, Chibucos MC, Tyler BM, Dean RA (2009) Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms. BMC Microbiol 9:S7. doi: 10.1186/1471-2180-9-s1-s7 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. The Plant Cell 23:2809–2820. doi: 10.1105/tpc.111.087346 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: A biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460. doi: 10.1104/pp.102.017236 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923. doi: 10.1111/j.1365-313X.2010.04387.x CrossRefPubMedGoogle Scholar
  57. Piasecka A, Jedrzejczak-Rey N, Bednarek P (2015) Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol 206:948–964. doi: 10.1111/nph.13325 CrossRefPubMedGoogle Scholar
  58. Pieterse CMJ, Does DVd, Zamioudis C, Leon-Reyes A, Wees SCMV (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. doi: 10.1146/annurev-cellbio-092910-154055 CrossRefPubMedGoogle Scholar
  59. Povero G et al (2011) Transcript profiling of chitosan-treated Arabidopsis seedlings. J Plant Res 124:619–629. doi: 10.1007/s10265-010-0399-1 CrossRefPubMedGoogle Scholar
  60. Rojas CM, Senthil-Kumar M, Tzin V, Mysore K (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17. doi: 10.3389/fpls.2014.00017 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Saga H et al (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant Microbe Interact 25:684–696. doi: 10.1094/MPMI-09-11-0244 CrossRefPubMedGoogle Scholar
  62. Saisho D, Nambara E, Naito S, Tsutsumi N, Hirai A, Nakazono M (1997) Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Mol Biol 35:585–596. doi: 10.1023/a:1005818507743 CrossRefPubMedGoogle Scholar
  63. Sanchez-Vallet A, Ramos B, Bednarek P, Lopez G, Pislewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63:115–127. doi: 10.1111/j.1365-313X.2010.04224.x PubMedGoogle Scholar
  64. Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851. doi: 10.1111/j.1365-313X.2010.04197.x CrossRefPubMedGoogle Scholar
  65. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sokal RR (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438.Google Scholar
  67. Subramanian A et al (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi: 10.1073/pnas.0506580102 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Taguchi G, Ubukata T, Nozue H, Kobayashi Y, Takahi M, Yamamoto H, Hayashida N (2010) Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J 63:1031–1041. doi: 10.1111/j.1365-313X.2010.04298.x CrossRefPubMedGoogle Scholar
  69. Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947. doi: 10.1111/nph.13286 CrossRefPubMedGoogle Scholar
  70. van Wees SC, Chang HS, Zhu T, Glazebrook J (2003) Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132:606–617. doi: 10.1104/pp.103.022186 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847. doi: 10.3390/ijms14046805 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the Diversity of the Arabidopsis glutathione S-Transferase Gene Family. Plant Mol Biol 49:515–532. doi: 10.1023/a:1015557300450 CrossRefPubMedGoogle Scholar
  73. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39:D1118–D1122. doi: 10.1093/nar/gkq1120 CrossRefPubMedGoogle Scholar
  74. Zeier J (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ 36:2085–2103. doi: 10.1111/pce.12122 CrossRefPubMedGoogle Scholar
  75. Zhou N, Tootle TL, Glazebrook J (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419–2428CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
  2. 2.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations