Advertisement

Plant Molecular Biology

, Volume 93, Issue 6, pp 593–606 | Cite as

Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium ‘Jinba’

  • Jingjing Wang
  • Haibin Wang
  • Lian Ding
  • Aiping Song
  • Feng Shen
  • Jiafu Jiang
  • Sumei Chen
  • Fadi ChenEmail author
Article

Abstract

Key message

Auxin regulates chrysanthemum petal elongation by promoting cell elongation. Transcriptomic analysis shows that auxin signal transduction may connect with other transcription factors by TCPs to regulate chrysanthemum petal elongation.

Abstract

As an ornamental species, Chrysanthemum morifolium has high ornamental and economic value. Petal size is the primary factor that influences the ornamental value of chrysanthemum, but the mechanism underlying the development of C. morifolium petals remains unclear. In our study, we tracked the growth of petals and found that the basal region of ‘Jinba’ petals showed a higher elongation rate, exhibiting rapid cell elongation during petal growth. During petal elongation growth, auxin was demonstrated to promote cell elongation and an increase in cell numbers in the petal basal region. To further study the molecular mechanisms underlying petal growth, the RNA-seq (high-throughput cDNA sequencing) technique was employed. Four cDNA libraries were assembled from petals in the budding, bud breaking, early blooming and full blooming stages of ‘Jinba’ flower development. Analysis of differentially expressed genes (DEGs) showed that auxin was the most important regulator in controlling petal growth. The TEOSINTEBRANCHED 1, CYCLOIDEA and PCF transcription factor genes (TCPs), basic helix-loop-helix-encoding gene (bHLH), glutaredoxin-C (GRXC) and other zinc finger protein genes exhibited obvious up-regulation and might have significant effects on the growth of ‘Jinba’ petals. Given the interaction between these genes in Arabidopsis thaliana, we speculated that auxin signal transduction might exhibit a close relationship with transcription factors through TCPs. In summary, we present the first comprehensive transcriptomic and hormone analyses of C. morifolium petals. The results offer direction in identifying the mechanism underlying the development of chrysanthemum petals in the elongated phase and have great significance in improving the ornamental characteristics of C. morifolium via molecular breeding.

Keywords

Chrysanthemum morifolium Hormone Petal growth RNA-seq Transcription factor 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31500570, 31425022), the Natural Science Fund of Jiangsu Province, China (BK20150661), and the Fundamental Research Funds for the Central Universities (KJQN201652).

Author contributions

JW and FS performed the experiments. FC and HW conceptualized and supervised the project. JW, LD, AS, JJ and SC participated in writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2017_584_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1478 KB)
11103_2017_584_MOESM2_ESM.xlsx (578 kb)
Supplementary material 2 (XLSX 577 KB)
11103_2017_584_MOESM3_ESM.xlsx (37 kb)
Supplementary material 3 (XLSX 36 KB)
11103_2017_584_MOESM4_ESM.pdf (189 kb)
Supplementary material 4 (PDF 188 KB)
11103_2017_584_MOESM5_ESM.pdf (181 kb)
Supplementary material 5 (PDF 180 KB)
11103_2017_584_MOESM6_ESM.pdf (190 kb)
Supplementary material 6 (PDF 189 KB)
11103_2017_584_MOESM7_ESM.pdf (93 kb)
Supplementary material 7 (PDF 93 KB)

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29. doi: 10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995. doi: 10.1101/gr.7.10.986 PubMedGoogle Scholar
  3. Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23(1):69–80. doi: 10.1105/tpc.110.079079 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann MC, Lelandais-Brière C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74(6):920–934. doi: 10.1111/tpj.12178 CrossRefPubMedGoogle Scholar
  5. Broholm SK, Elomaa P (2008) A TCP domain transcription factor controls flower type specification along the radial axis of the gerbera (asteraceae) inflorescence. Proc Natl Acad Sci USA 105(26):9117–9122. doi: 10.1073/pnas.0801359105 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Castelain M, Hir RL, Bellini C (2012) The non-DNA-binding bHLH, transcription factor PRE3/bHLH135/ATBS1/TMO7, is involved in the regulation of light signaling pathway in Arabidopsis. Physiol Plant 145(3):450–460. doi: 10.1111/j.1399-3054.2012.01600.x CrossRefPubMedGoogle Scholar
  7. Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity: 20 years of abcs. Semin Cell Dev Biol 21(1):73–79. doi: 10.1016/j.semcdb.2009.10.005 CrossRefPubMedGoogle Scholar
  8. Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158(1):423–438. doi: 10.1104/pp.111.186999 CrossRefPubMedGoogle Scholar
  9. Consortium AIM (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607. doi: 10.1126/science.1203877 CrossRefGoogle Scholar
  10. Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, Dj van Dijk A, Muino JM, Cutri L, Dornelas MC, Angenent GC, Immink RGH (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159(4):1511–1523. doi: 10.1104/pp.112.200303 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dornelas MC, Patreze CM, Angenent GC, Immink RGH (2011) MADS: the missing link between identity and growth? Trends Plant Sci 16(2):89–97. doi: 10.1016/j.tplants.2010.11.003 CrossRefPubMedGoogle Scholar
  12. Efroni I, Han SK, Kim HJ, Wu MF, Steiner E, Birnbaum KD, Hong JC, Eshed Y, Wagner D (2013) Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev Cell 24(4):1121–1124. doi: 10.1016/j.devcel.2013.01.019 CrossRefGoogle Scholar
  13. Escamez S, Zhang B, Oikawa A, Sztojka B, Sathitsuksanoh N, Eudes A, Scheller HV, Tuominen H (2016) The bHLH62 transcription factor is involved in the PIRIN2-dependent regulation of lignification in the xylem of Arabidopsis thaliana. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116698
  14. Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci 19(7):460–470. doi: 10.1016/j.tplants.2014.01.010 CrossRefPubMedGoogle Scholar
  15. Goloveshkina EN, Shulga OA, Shchennikova AV, Kamionskaya AM, Skryabin KG (2012) Functional characterization of chrysanthemum SEPALLATA3 homologs CDM77 and CDM44 in transgenic tobacco plants. Dokl Biol Sci 443(1):87–90. MAIK Nauka/Interperiodica. doi: 10.1134/S0012496612020020 CrossRefPubMedGoogle Scholar
  16. Guo X, Hu Z, Yin W, Yu X, Zhu Z, Zhang J, Chen G (2016) The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development. Sci Rep. doi: 10.1038/srep20454 Google Scholar
  17. Higuchi Y, Hisamatsu T (2015) CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Plant Sci 237:1–7. doi: 10.1016/j.plantsci.2015.04.011 CrossRefPubMedGoogle Scholar
  18. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409(6819):525–529. doi: 10.1038/35054083 CrossRefPubMedGoogle Scholar
  19. Huang T, Irish VF (2016) Gene networks controlling petal organogenesis. J Exp Bot 67(1):61–68. doi: 10.1093/jxb/erv444 CrossRefPubMedGoogle Scholar
  20. Joachim FU, Huang LJ, Sina B, Moritz W, Corinna T, Christiane G (2016) CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana. BBA Gene Regul Mech. doi: 10.1016/j.bbagrm.2016.11.001 Google Scholar
  21. Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7(4):e1000090. doi: 10.1371/journal.pbio.1000090 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lampugnani ER, Kilinc A, Smyth DR (2013) Auxin controls petal initiation in Arabidopsis. Development 140(1):185–194. doi: 10.1242/dev.084582 CrossRefPubMedGoogle Scholar
  23. Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S (2009) Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. Plant Cell 21(2):429–441. doi: 10.1105/tpc.108.064477 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li L, Zhang W, Zhang L, Li N, Peng J, Wang Y, Zhong C, Yang Y, Sun S, Liang S, Wang X (2015) Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida. Front Plant Sci 6:168. doi: 10.3389/fpls.2015.00168 PubMedPubMedCentralGoogle Scholar
  25. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi: 10.1038/nmeth.1226 CrossRefPubMedGoogle Scholar
  26. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  27. Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci 106(52):22534–22539. doi: 10.1073/pnas.0908718106 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18):4107–4118. doi: 10.1242/dev.01955 CrossRefPubMedGoogle Scholar
  29. Narumi T, Aida R, Koyama T, Yamaguchi H, Sasaki K, Shikata M, Nakayama M, Ohme TM, Ohtsubo N (2011) Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium. Plant Biotechnol 28(2):131–140. doi: 10.5511/plantbiotechnology.11.0121a CrossRefGoogle Scholar
  30. Pabón-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158(4):1685–1704. doi: 10.1104/pp.111.192104 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17(11):2899–2910. doi: 10.1105/tpc.105.034876 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26(4):385–394. doi: 10.1046/j.1365-313X.2001.2641042.x CrossRefPubMedGoogle Scholar
  33. Piya S, Shrestha SK, Binder B, Stewart CN, Hewezi T (2014) Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Front Plant Sci 5:744. doi: 10.3389/fpls.2014.00744 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Posé D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15(1):45–50. doi: 10.1016/j.pbi.2011.09.002 CrossRefPubMedGoogle Scholar
  35. Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N, Fang W, Guan Z, Chen F, Jiang J (2014) A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics 15(1):1. doi: 10.1186/1471-2164-15-844 CrossRefGoogle Scholar
  36. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18(1):40–54. doi: 10.1105/tpc.105.037796 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rinaldi MA, Liu J, Enders TA, Bartel B, Strader LC (2012) A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Mol Biol 79(4–5):359–373. doi: 10.1007/s11103-012-9917-y CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schippers JH, Foyer CH, van Dongen JT (2016) Redox regulation in shoot growth, SAM maintenance and flowering. Curr Opin Plant Biol 29:121–128. doi: 10.1016/j.pbi.2015.11.009 CrossRefPubMedGoogle Scholar
  39. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627. doi: 10.1105/tpc.104.026690 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Su YH, Liu YB, Zhang XS (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625. doi: 10.1093/mp/ssr007 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sundberg, E, Østergaard, L (2009) Distinct and dynamic auxin activities during reproductive development. CSH Perspect Biol 1(6):a001628. doi: 10.1101/cshperspect.a001628 Google Scholar
  42. Szécsi J, Joly C, Bordji K, Varaud E, Cock JM, Dumas C, Bendahmane M (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25(16):3912–3920. doi: 10.1038/sj.emboj.7601270 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2012) Evolution and diversification of the cyc/tb1 gene family in asteraceae—a comparative study in gerbera (mutisieae) and sunflower (heliantheae). Mol Biol Evol 29(4):1155–1166. doi: 10.1093/molbev/msr283 CrossRefPubMedGoogle Scholar
  44. Takeda S, Matsumoto N, Okada, K (2004) RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131(2):425–434. doi: 10.1242/dev.00938 CrossRefPubMedGoogle Scholar
  45. Takeda S, Iwasaki A, Matsumoto N, Uemura T, Tatematsu K, Okada K (2013) Physical interaction of floral organs controls petal morphogenesis in Arabidopsis. Plant Physiol 161(3):1242–1250. doi: 10.1104/pp.112.212084 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42(1):85–93. doi: 10.1093/pcp/pce009 CrossRefPubMedGoogle Scholar
  47. Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH (2012) The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J Exp Bot 63(2):809–823. doi: 10.1093/jxb/err305 CrossRefPubMedGoogle Scholar
  48. Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M (2011) AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23(3):973–983. doi: 10.1105/tpc.110.081653 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24(10):1874–1885. doi: 10.1038/sj.emboj.7600659 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xing S, Rosso MG, Zachgo S (2005) ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development 132(7):1555–1565. doi: 10.1242/dev.01725 CrossRefPubMedGoogle Scholar
  51. Yamaguchi N, Wu MF, Winter CM, Berns MC, Nolewilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24(3):271–282. doi: 10.1016/j.devcel.2012.12.017 CrossRefPubMedGoogle Scholar
  52. Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J 40(5):772–782. doi: 10.1111/j.1365-313X.2004.02254.x CrossRefPubMedGoogle Scholar
  53. Yang N, Guo WM, Chen FD, Fang WM (2007) Effects of photoperiod on floral bud differentiation and flowering of Chrysanthemum morifolium Ramat. ‘Jinba’. Acta Hortic Sinica 34(4):965.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & EquipmentNanjingChina

Personalised recommendations