Plant Molecular Biology

, Volume 93, Issue 1–2, pp 209–225 | Cite as

Kelch-motif containing acyl-CoA binding proteins AtACBP4 and AtACBP5 are differentially expressed and function in floral lipid metabolism

  • Zi-Wei Ye
  • Jie Xu
  • Jianxin Shi
  • Dabing Zhang
  • Mee-Len Chye


Key message

We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11–14 in the mature pollen, while AtACBP5 was expressed at stages 7–10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatographyflame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds in comparison to the wild type (Col-0). Fatty acid profiling demonstrated a decline in stearic acid and an increase in linolenic acid in acbp4 and acbp4acbp5 buds, respectively, over Col-0. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5′-flanking regions indicated the minimal promoter activity for AtACBP4 (−145/+103) and AtACBP5 (−181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) mapped at AtACBP4 (−157/−153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting.


In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in plant stress and development. AtACBP4 and AtACBP5 represent the two largest proteins in the AtACBP family. Despite having kelch-motifs and sharing a common cytosolic subcellular localization, AtACBP4 and AtACBP5 differ in spatial and temporal expression. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the respective AtACBP4 and AtACBP5 promoters, as well as, qRT-PCR analysis revealed that AtACBP4 was expressed at stages 11–14 in mature pollen, while AtACBP5 was expressed at stages 7–10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatography-flame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds, in comparison to the wild type. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5′-flanking regions indicated the minimal promoter region for AtACBP4 (−145/+103) and AtACBP5 (−181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) within AtACBP4 (−157/−153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. These results suggest that AtACBP4 and AtACBP5 both function in floral lipidic metabolism and they may play complementary roles in Arabidopsis microspore-to-pollen development.


Acyl-CoA-binding protein Arabidopsis thaliana Lipid metabolism Pollen POLLEN1 Pollen tube 



Acyl-CoA-binding protein




Dicarboxylic fatty acid




Electrophoretic mobility shift assays


Fatty acid


Flame ionization detector


Gas chromatography-mass spectrometry




Hydroxy fatty acid










Scanning electron microscopy


Transmission electron microscopy

Supplementary material

11103_2016_557_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1332 KB)


  1. Alvarado VY, Tag A, Thomas TL (2011) A cis regulatory element in the TAPNAC promoter directs tapetal gene expression. Plant Mol Biol 75(1–2):129–139CrossRefPubMedGoogle Scholar
  2. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460. doi:10.1146/annurev-arplant-042809-112312 CrossRefPubMedGoogle Scholar
  3. Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37(5):859–869CrossRefPubMedGoogle Scholar
  4. Boavida LC, McCormick S (2007) Technical advance: temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52(3):570–582CrossRefPubMedGoogle Scholar
  5. Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148(1):304–315. doi:10.1104/pp.108.123331 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye ML (2010) The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol 186(4):843–855. doi:10.1111/j.1469-8137.2010.03231.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157(2):842–853. doi:10.1104/pp.111.181693 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Christie WW, Han X (2010) Analysis of fatty acids. In Lipid analysis: isolation, separation, identification and lipidomic analysis. Oily Press, England, pp 145–151CrossRefGoogle Scholar
  9. Chye ML (1998) Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain. Plant Mol Biol 38(5):827–838CrossRefPubMedGoogle Scholar
  10. Chye ML, Huang BQ, Zee SY (1999) Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product. Plant J 18(2):205–214CrossRefPubMedGoogle Scholar
  11. Chye ML, Li HY, Yung MH (2000) Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14C palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats. Plant Mol Biol 44(6):711–721CrossRefPubMedGoogle Scholar
  12. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  13. da Costa-Nunes JA, Grossniklaus U (2003) Unveiling the gene-expression profile of pollen. Genome Biol 5(1):205. doi:10.1186/gb-2003-5-1-205 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Du ZY, Chye ML (2013) Interactions between Arabidopsis acyl-CoA-binding proteins and their protein partners. Planta 238(2):239–245. doi:10.1007/s00425-013-1904-2 CrossRefPubMedGoogle Scholar
  15. Du ZY, Xiao S, Chen QF, Chye ML (2010) Depletion of the membrane-associated acyl-Coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol 152(3):1585–1597. doi:10.1104/pp.109.147066 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013a) Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. Plant J 74(2):294–309. doi:10.1111/tpj.12121 CrossRefPubMedGoogle Scholar
  17. Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013b) Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ 36(2):300–314. doi:10.1111/j.1365-3040.2012.02574.x CrossRefPubMedGoogle Scholar
  18. Du ZY, Chen MX, Chen QF, Gu JD, Chye ML (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ 38(1):101–117. doi:10.1111/pce.12382 CrossRefPubMedGoogle Scholar
  19. Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–97. doi:10.1105/tpc.015800 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134(3):1080–1087. doi:10.1104/pp.103.035998 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Franke R, Schreiber L (2007) Suberin-a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10(3):252–259CrossRefGoogle Scholar
  22. Franklin-Tong VE (1999a) Signaling and the modulation of pollen tube growth. Plant Cell 11(4):727–738CrossRefPubMedPubMedCentralGoogle Scholar
  23. Franklin-Tong VE (1999b) Signaling in pollination. Curr Opin Plant Biol 2(6):490–495CrossRefPubMedGoogle Scholar
  24. Gao W, Xiao S, Li HY, Tsao SW, Chye ML (2009) Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol 181(1):89–102. doi:10.1111/j.1469-8137.2008.02631.x CrossRefPubMedGoogle Scholar
  25. Gao W, Li HY, Xiao S, Chye ML (2010) Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J 62(6):989–1003. doi:10.1111/j.1365-313X.2010.04209.x PubMedGoogle Scholar
  26. Gu F, Nielsen E (2013) Targeting and regulation of cell wall synthesis during tip growth in plants. J Integr Plant Biol 55(9):835–846. doi:10.1111/jipb.12077 CrossRefPubMedGoogle Scholar
  27. Guan Y, Guo J, Li H, Yang Z (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6(4):1053–1064. doi:10.1093/mp/sst070 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669. doi:10.1023/A:1006083725102 CrossRefPubMedGoogle Scholar
  29. Henriksson E, Olsson ASB, Johannesson H, Johansson H, Hanson J, Engström P, Söderman E  (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139(1):509–518CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57(1):79–92CrossRefPubMedGoogle Scholar
  31. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. doi:10.1016/j.plantsci.2013.12.007 CrossRefPubMedGoogle Scholar
  32. Hsiao AS, Haslam RP, Michaelson LV, Liao P, Chen QF, Sooriyaarachchi S, Mowbray SL, Napier JA, Tanner JA, Chye ML (2014a) Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 34(6):865–877. doi:10.1042/BSR20140139 CrossRefGoogle Scholar
  33. Hsiao AS, Haslam RP, Michaelson LV, Liao P, Napier JA, Chye ML (2014b) Gene expression in plant lipid metabolism in Arabidopsis seedlings. PloS One 9(9):e107372. doi:10.1371/journal.pone.0107372 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hsiao AS, Yeung EC, Ye ZW, Chye ML (2015) The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development. Plant Cell Physiol 56(2):322–333. doi:10.1093/pcp/pcu163 CrossRefPubMedGoogle Scholar
  35. Huang Q, Dresselhaus T, Gu H, Qu LJ (2015) Active role of small peptides in Arabidopsis reproduction: Expression evidence. J Integr Plant Biol 57(6):518–521CrossRefPubMedGoogle Scholar
  36. Johnson-Brousseau SA, McCormick S (2004) A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. Plant J 39(5):761–775. doi:10.1111/j.1365-313X.2004.02147.x CrossRefPubMedGoogle Scholar
  37. Kobayashi K, Awai K, Takamiya K, Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134:640–648CrossRefPubMedPubMedCentralGoogle Scholar
  38. Leung KC, Li HY, Mishra G, Chye ML (2004) ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA. Plant Mol Biol 55(2):297–309. doi:10.1007/s11103-004-0642-z CrossRefPubMedGoogle Scholar
  39. Leung KC, Li HY, Xiao S, Tse MH, Chye ML (2006) Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein. Planta 223(5):871–881. doi:10.1007/s00425-005-0139-2 CrossRefPubMedGoogle Scholar
  40. Li HY, Chye ML (2003) Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. Plant Mol Biol 51(4):483–492CrossRefPubMedGoogle Scholar
  41. Li HY, Chye ML (2004) Arabidopsis Acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats. Plant Mol Biol 54(2):233–243. doi:10.1023/B:PLAN.0000028790.75090.ab CrossRefPubMedGoogle Scholar
  42. Li HY, Xiao S, Chye ML (2008) Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. J Exp Bot 59(14):3997–4006. doi:10.1093/jxb/ern241 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liu L, Fan XD (2013) Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant Mol Biol 83(3):165–175. doi:10.1007/s11103-013-0085-5 CrossRefPubMedGoogle Scholar
  44. Mascarenhas JP (1975) The biochemistry of angiosperm pollen development. Bot Rev 41(3):259–314. doi:10.2307/4353883 CrossRefGoogle Scholar
  45. McCormick S, Twell D, Vancanneyt G, Yamaguchi J (1991) Molecular analysis of gene regulation and function during male gametophyte development. Symp Soc Exp Biol 45:229–244PubMedGoogle Scholar
  46. Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integrative Plant Biol 51(8):727–739. doi:10.1111/j.1744-7909.2009.00842.x CrossRefGoogle Scholar
  47. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol plantarum 15(3):473–497CrossRefGoogle Scholar
  48. Muschietti J, Dircks L, Vancanneyt G,  McCormick S  (1994) LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J 6(3):321–338CrossRefPubMedGoogle Scholar
  49. Nakamura Y (2015) Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 60:17–29. doi:10.1016/j.plipres.2015.09.001 CrossRefPubMedGoogle Scholar
  50. Nakamura Y, Kobayashi K, Ohta H (2009) Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol Biochem 47:535–539CrossRefPubMedGoogle Scholar
  51. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136. doi:10.1146/annurev.arplant.48.1.109 CrossRefPubMedGoogle Scholar
  52. Pavy N, Rombauts S, Dehais P, Mathe C, Ramana DV, Leroy P, Rouze P (1999) Evaluation of gene prediction software using a genomic data set: application to Arabidopsis thaliana sequences. Bioinformatics 15(11):887–899CrossRefPubMedGoogle Scholar
  53. Piffanelli P, Ross JH, Murphy D (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11(2):65–80CrossRefGoogle Scholar
  54. Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Zarsky V, Potocky M (2012) Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci 3:54. doi:10.3389/fpls.2012.00054 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Priest HD, Filichkin SA, Mockler TC (2009) Cis-regulatory elements in plant cell signaling. Curr Opin Plant Biol 12(5):643–649. doi:10.1016/j.pbi.2009.07.016 CrossRefPubMedGoogle Scholar
  56. Qin Y, Yang Z (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22(8):816–824. doi:10.1016/j.semcdb.2011.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimeric heat shock genes in transgenic tobacco. Mol Gen Genet 231(2):226–232PubMedGoogle Scholar
  58. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45(5):577–585CrossRefGoogle Scholar
  59. Sanders PM, Bui AQ, Weterings K, McIntire K, Hsu YC, Lee PY, Truong MT, Beals T, Goldberg R (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11(6):297–322CrossRefGoogle Scholar
  60. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shi JX, Cui MH, Yang L, Kim YJ, Zhang DB (2015) Genetic and biochemical mechanisms of pollen wall development. Trend Plant Sci 20(11):741–753CrossRefGoogle Scholar
  62. Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet 215(2):326–331CrossRefPubMedGoogle Scholar
  63. Sin SF, Chye ML (2004) Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta 219(6):1010–1022. doi:10.1007/s00425-004-1306-6 CrossRefPubMedGoogle Scholar
  64. Tjaden G, Edwards JW, Coruzzi GM (1995) Cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol 108(3):1109–1117CrossRefPubMedPubMedCentralGoogle Scholar
  65. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24(2):149–160. doi:10.1007/s00497-010-0157-5 CrossRefPubMedGoogle Scholar
  66. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16(9):2323–2334CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60(5):1479–1492. doi:10.1093/jxb/erp095 CrossRefPubMedGoogle Scholar
  68. Wilson DO, Johnson P, McCord BR (2001) Nonradiochemical DNase I footprinting by capillary electrophoresis. Electrophoresis 22(10):1979–1986. doi:10.1002/1522-2683(200106)22:10<1979::AID-ELPS1979>3.0.CO;2-A CrossRefPubMedGoogle Scholar
  69. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718. doi:10.1371/journal.pone.0000718 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xia Y, Yu K, Gao QM, Wilson EV, Navarre D, Kachroo P, Kachroo A (2012) Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes. Front Plant Sci 3:224. doi:10.3389/fpls.2012.00224 Google Scholar
  71. Xiao S, Chye ML (2009) An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem 47(6):479–484. doi:10.1016/j.plaphy.2008.12.002 CrossRefPubMedGoogle Scholar
  72. Xiao S, Chye ML (2010) The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy 6(6):802–804. doi:10.1105/tpc.110.075333 CrossRefPubMedGoogle Scholar
  73. Xiao S, Chye ML (2011a) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50(2):141–151. doi:10.1016/j.plipres.2010.11.002 CrossRefPubMedGoogle Scholar
  74. Xiao S, Chye ML (2011b) Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol 156(4):2069–2081. doi:10.1104/pp.111.176933 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Xiao S, Gao W, Chen QF, Ramalingam S, Chye ML (2008a) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J 54(1):141–151. doi:10.1111/j.1365-313X.2008.03402.x CrossRefPubMedGoogle Scholar
  76. Xiao S, Li HY, Zhang JP, Chan SW, Chye ML (2008b) Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol 68(6):571–583. doi:10.1007/s11103-008-9392-7 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xiao S, Chen QF, Chye ML (2009a) Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis. Plant Signal Behav 4(11):1063–1065CrossRefPubMedPubMedCentralGoogle Scholar
  78. Xiao S, Chen QF, Chye ML (2009b) Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester. Plant Physiol Biochem 47(10):926–933. doi:10.1016/j.plaphy.2009.06.007 CrossRefPubMedGoogle Scholar
  79. Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22(5):1463–1482. doi:10.1105/tpc.110.075333 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhartc D, Schreiberd L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26(4):1544-1556CrossRefPubMedPubMedCentralGoogle Scholar
  81. Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22(1):91–107. doi:10.1105/tpc.109.071803 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D (2014) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56(10):979–994CrossRefPubMedGoogle Scholar
  83. Ye ZW, Chye ML (2016) Plant cytosolic acyl-CoA-binding proteins. Lipids 51(1):1–13. doi:10.1007/s11745-015-4103-z CrossRefPubMedGoogle Scholar
  84. Ye ZW, Lung SC, Hu TH, Chen QF, Suen YL, Wang M, Hoffmann-Benning S, Yeung E, Chye ML (2016) Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. Plant Mol Biol. doi:10.1007/s11103-016-0541-0 Google Scholar
  85. Zhang D, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17:49–55 Zheng SX, Xiao S, Chye ML (2012) The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. J Exp Bot 63(8):2985–3000. doi:10.1093/jxb/ers009 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zi-Wei Ye
    • 1
  • Jie Xu
    • 2
  • Jianxin Shi
    • 2
  • Dabing Zhang
    • 2
  • Mee-Len Chye
    • 1
  1. 1.School of Biological SciencesThe University of Hong KongHong KongChina
  2. 2.Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations