Plant Molecular Biology

, Volume 93, Issue 1–2, pp 21–34 | Cite as

Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice

  • Xiaoming Li
  • Huipei Han
  • Ming Chen
  • Wei Yang
  • Li Liu
  • Ning Li
  • Xinhua Ding
  • Zhaohui ChuEmail author


Short-chain peptides play important roles in plant development and responses to abiotic and biotic stresses. Here, we characterized a gene of unknown function termed OsDT11, which encodes an 88 amino acid short-chain peptide and belongs to the cysteine-rich peptide family. It was found that the expression of OsDT11 can be activated by polyethylene glycol (PEG) treatment. Compared with wild-type lines, the OsDT11-overexpression lines displayed dramatically enhanced tolerance to drought and had reduced water loss, reduced stomatal density, and an increased the concentration of abscisic acid (ABA). The suppression of OsDT11 expression resulted in an increased sensitivity to drought compared to wild-type expression. Several drought-related genes, including genes encoding abscisic acid (ABA) signaling markers, were also strongly induced in the OsDT11-overexpressing lines. Moreover, the expression of OsDT11 was repressed in ABA-insensitive mutant Osbzip23 and Os2H16 RNAi lines. These results suggest that OsDT11-mediated drought tolerance may be dependent on the ABA signaling pathway.


Oryzae sativa Cysteine-rich peptides Drought ABA-insensitive 



We are grateful to Prof. Lizhong Xiong (Huazhong Agricultural University, Wuhan, China) for providing the rice seeds of the osbzip23 T-DNA insertion line and to Dr. Yang Li (Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, China) for helping with the ESEM assay. This work was funded by the Shandong Modern Agricultural Technology & Industry System (SDAIT-17-06), the National Program of Transgenic Variety Development of China (2013ZX08009-004, 2014ZX08001-002), the Shandong Provincial Natural Science Foundation of PR China (ZR2014CQ044), and the Taishan Scholar Program of Shandong Province.

Author contributions

Z.C., X.D. and X.L. designed the experiments. H.H., M.C., W.Y. and N.L. performed the experiments. X.L., X.D. and L.L. analyzed data. X.L. and Z.C. wrote the article.

Compliance with ethical standards

Conflict of interest

We declare that no conflict of interest exists for any of the authors.

Supplementary material

11103_2016_544_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 KB)
11103_2016_544_MOESM2_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3938 KB)


  1. Astafieva AA, Rogozhin EA, Andreev YA, Odintsova TI, Kozlov SA, Grishin EV, Egorov TA (2013) A novel cysteine-rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers. Plant Physiol Biochem 70:93–99. doi: 10.1016/j.plaphy.2013.05.022 CrossRefPubMedGoogle Scholar
  2. Baron KN, Schroeder DF, Stasolla C (2014) GEm-Related 5 (GER5), an ABA and stress-responsive GRAM domain protein regulating seed development and inflorescence architecture. Plant Sci 223:153–166. doi: 10.1016/j.plantsci.2014.03.017 CrossRefPubMedGoogle Scholar
  3. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SiganlP 3.0. J Mol Biol 340(4):783–795. doi: 10.1016/j.jmb.2004.05.028 CrossRefPubMedGoogle Scholar
  4. Campo S, Peris-Peris C, Montesinos L, Penas G, Messeguer J, San Segundo B (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63(2):983–999. doi: 10.1093/jxb/err328 CrossRefPubMedGoogle Scholar
  5. Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55(3):604–619. doi: 10.1093/pcp/pct204 CrossRefPubMedGoogle Scholar
  6. Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582. doi: 10.1104/pp.113.221911 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dresselhaus T, Franklin-Tong N (2013) Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6(4):1018–1036. doi: 10.1093/mp/sst061 CrossRefPubMedGoogle Scholar
  8. Ebrahimpour S, Tabari MA, Youssefi MR, Aghajanzadeh H, Behzadi MY (2013) Synergistic effect of aged garlic extract and naltrexone on improving immune responses to experimentally induced fibrosarcoma tumor in BALB/c mice. Pharmacogn Res 5(3):189–194. doi: 10.4103/0974-8490.112426 CrossRefGoogle Scholar
  9. Farkas A, Maróti G, DurgÓ§ H, Györgypál Z, Lima RM, Medzihradszky KF, Kereszt A, Mergaert P, Kondorosi É (2014) Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc Natl Acad Sci USA 111(14):5183–5188. doi: 10.1073/pnas.1404169111 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gan D, Jiang H, Zhang J, Zhao Y, Zhu S, Cheng B (2011) Genome-wide analysis of BURP domain-containing genes in maize and sorghum. Mol Biol Rep 38(7):4553–4563. doi: 10.1007/s11033-010-0587-z CrossRefPubMedGoogle Scholar
  11. Ge X, Chang F, Ma H (2010) Signaling and transcriptional control of reproductive development in Arabidopsis. Curr Biol 20(22):988–997. doi: 10.1016/j.cub.2010.09.040 CrossRefGoogle Scholar
  12. Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175(4023):776–777. doi: 10.1126/science.175.4023.776 CrossRefPubMedGoogle Scholar
  13. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282. doi: 10.1046/j.1365-313X.1994.6020271.x CrossRefPubMedGoogle Scholar
  14. Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52(12):2136–2146. doi: 10.1093/pcp/pcr143 CrossRefPubMedGoogle Scholar
  15. Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, Sakagami Y (2010) Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol 51(1):1–8. doi: 10.1093/pcp/pcp180 CrossRefPubMedGoogle Scholar
  16. Lee SC, Hwang IS, Choi HW, Hwang BK (2008) Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. Plant Physiol 148(2):1004–1020. doi: 10.1104/pp.108.123836 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li N, Kong L, Zhou W, Zhang X, Wei S, Ding X, Chu Z (2013a) Overexpression of Os2H16 enhances resistance to phytopathogens and tolerance to drought stress in rice. Plant Cell Tissue Org 115(3):429–441. doi: 10.1007/s11240-013-0374-3
  18. Li XM, Sang YL, Zhao XY, Zhang XS (2013b) High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One 8(8):e0072852. doi: 10.1371/journal.pone.0072852
  19. Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157–1169. doi: 10.1007/s00425-011-1564-z CrossRefPubMedGoogle Scholar
  20. Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K, Qin F (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9(9):e1003790. doi: 10.1371/journal.pgen.1003790 CrossRefPubMedPubMedCentralGoogle Scholar
  21. López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TD, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187(2):343–354. doi: 10.1111/j.1469-8137.2010.03291.x CrossRefPubMedGoogle Scholar
  22. Maróti G, Kondorosi E (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 5:326. doi: 10.3389/fmicb.2014.00326 PubMedPubMedCentralGoogle Scholar
  23. Maróti G, Downie JA, Kondorosi É (2015) Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr Opin Plant Biol 26:57–63. doi: 10.1016/j.pbi.2015.05.031 CrossRefPubMedGoogle Scholar
  24. Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell–cell communication in plant reproduction and development. J Exp Bot 62(5):1677–1686. doi: 10.1093/jxb/err002 CrossRefPubMedGoogle Scholar
  25. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49. doi: 10.1093/dnares/dsr040 CrossRefPubMedGoogle Scholar
  26. Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance - different tiers of regulation. J Plant Physiol 171(7):486–496. doi: 10.1016/j.jplph.2013.12.007 CrossRefPubMedGoogle Scholar
  27. Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R (2011) Nitric oxide in legume-rhizobium symbiosis. Plant Sci 181(5):573–581. doi: 10.1016/j.plantsci.2011.04.007 CrossRefPubMedGoogle Scholar
  28. Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18(5):259–266. doi: 10.1016/j.tplants.2012.11.002 CrossRefPubMedGoogle Scholar
  29. Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32(7):959–970. doi: 10.1007/s00299-013-1418-1 CrossRefPubMedGoogle Scholar
  30. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95. doi: 10.1104/pp.108.129791 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103. doi: 10.1016/j.bbagrm.2011.10.005 CrossRefPubMedGoogle Scholar
  32. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2):137–148. doi: 10.1046/j.1365-313X.2003.01708.x CrossRefPubMedGoogle Scholar
  33. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253(5022):895–897. doi: 10.1126/science.253.5022.895 CrossRefPubMedGoogle Scholar
  34. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling. Mol Plant Microbe Interact 20(5):492–499. doi: 10.1094/MPMI-20-5-0492 CrossRefPubMedGoogle Scholar
  35. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767. doi: 10.1104/pp.103.025742 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rombauts S, Dehais P, Montagu MV, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27(1):295–296. doi: 10.1093/nar/27.1.295 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330. doi: 10.1038/35066500 CrossRefPubMedGoogle Scholar
  38. Shen Q, Chen C-N, Brands A, Pan S-M, Ho T-HD (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol 45(3):327–340. doi: 10.1023/A:1006460231978 CrossRefPubMedGoogle Scholar
  39. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223. doi: 10.1016/S1369-5266(00)80068-0 CrossRefPubMedGoogle Scholar
  40. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227. doi: 10.1093/jxb/erl164 CrossRefPubMedGoogle Scholar
  41. Silverstein KA, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been underpredicted in plants. Plant J 51(2):262–280. doi: 10.1111/j.1365-313X.2007.03136.x CrossRefPubMedGoogle Scholar
  42. Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J 59(6):930–939. doi: 10.1111/j.1365-313X.2009.03926.x CrossRefPubMedGoogle Scholar
  43. Swamy BP, Kumar A (2013) Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 31(8):1308–1318. doi: 10.1016/j.biotechadv.2013.05.004 CrossRefPubMedGoogle Scholar
  44. Tabata R, Sawa S (2014) Maturation processes and structures of small secreted peptides in plants. Front. Plant Sci 5:311. doi: 10.3389/fpls.2014.00311 Google Scholar
  45. Tiricz H, Szucs A, Farkas A, Pap B, Lima RM, Maróti G, Kondorosi É, Kereszt A (2013) Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti. Appl Environ Microbiol 79 (21):6737–6746. doi: 10.1128/AEM.01791-13 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Verma SS, Yajima WR, Rahman MH, Shah S, Liu JJ, Ekramoddoullah AK, Kav NN (2012) A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol Biol 79(1–2):61–74. doi: 10.1007/s11103-012-9895-0 CrossRefPubMedGoogle Scholar
  47. Wei Q, Hu P, Kuai BK (2012) Ectopic expression of an Ammopiptanthus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in Arabidopsis. Plant Cell Tissue Org 110(3):359–369. doi: 10.1007/s11240-012-0157-2 CrossRefGoogle Scholar
  48. Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenfuhrer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20(6):506–512. doi: 10.1016/j.cub.2010.01.051 CrossRefPubMedGoogle Scholar
  49. Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952. doi: 10.1104/pp.108.128199 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xu ZY, Kim SY, Hyeon do Y, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25(11):4708–4724. doi: 10.1105/tpc.113.119099 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232(3):743–754. doi: 10.1007/s00425-010-1212-z CrossRefPubMedGoogle Scholar
  52. Zhou P, Silverstein KA, Gao L, Walton JD, Nallu S, Guhlin J, Young ND (2013) Detecting small plant peptides using SPADA (small peptide alignment discovery application). BMC Bioinfo 14:335–350. doi: 10.1186/1471-2105-14-335 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xiaoming Li
    • 1
  • Huipei Han
    • 1
  • Ming Chen
    • 1
  • Wei Yang
    • 1
  • Li Liu
    • 2
  • Ning Li
    • 1
  • Xinhua Ding
    • 1
  • Zhaohui Chu
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural MicrobiologyShandong Agricultural UniversityTai anPeople’s Republic of China
  2. 2.Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China

Personalised recommendations