Plant Molecular Biology

, Volume 91, Issue 1–2, pp 193–209 | Cite as

Transcriptome comparisons shed light on the pre-condition and potential barrier for C4 photosynthesis evolution in eudicots

  • Yimin Tao
  • Ming-Ju Amy Lyu
  • Xin-Guang Zhu


C4 photosynthesis evolved independently from C3 photosynthesis in more than 60 lineages. Most of the C4 lineages are clustered together in the order Poales and the order Caryophyllales while many other angiosperm orders do not have C4 species, suggesting the existence of biological pre-conditions in the ancestral C3 species that facilitate the evolution of C4 photosynthesis in these lineages. To explore pre-adaptations for C4 photosynthesis evolution, we classified C4 lineages into the C4-poor and the C4-rich groups based on the percentage of C4 species in different genera and conducted a comprehensive comparison on the transcriptomic changes between the non-C4 species from the C4-poor and the C4-rich groups. Results show that species in the C4-rich group showed higher expression of genes related to oxidoreductase activity, light reaction components, terpene synthesis, secondary cell synthesis, C4 cycle related genes and genes related to nucleotide metabolism and senescence. In contrast, C4-poor group showed up-regulation of a PEP/Pi translocator, genes related to signaling pathway, stress response, defense response and plant hormone metabolism (ethylene and brassinosteroid). The implications of these transcriptomic differences between the C4-rich and C4-poor groups to C4 evolution are discussed.


C4 photosynthesis C4 evolution Transcriptome Flaveria PPT Stress 



The authors thank anonymous reviewers for constructive comments. The National Basic Research and Development Program of the Ministry of Science and Technology of China (#2015CB150104), the Bill and Melinda Gates Foundation (#OPP1014417) and the international collaboration program of the National Science Foundation of China, Ministry of Science and Technology of China (# 2011DFA31070) supported this study. We thank Dr. Gane Wong, who organized the 1KP project on which this study was based.

Authors’ contribution

XGZ conceived the study, wrote and revised the manuscript. ML and YT conducted all analyses, wrote the manuscript, and generated the figures. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Supplementary material

11103_2016_455_MOESM1_ESM.xlsx (466 kb)
Supplementary material 1 (XLSX 465 kb)
11103_2016_455_MOESM2_ESM.xlsx (19 kb)
Supplementary material 2 (XLSX 19 kb)
11103_2016_455_MOESM3_ESM.pdf (93 kb)
Supplementary material 3 (PDF 92 kb)
11103_2016_455_MOESM4_ESM.xlsx (365 kb)
Supplementary material 4 (XLSX 365 kb)


  1. Ahmed FH et al (2015) Sequence-structure-function classification of a catalytically diverse oxidoreductase superfamily in mycobacteria. J Mol Biol 427:3554–3571CrossRefPubMedGoogle Scholar
  2. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aubry S, Kelly S, Kumpers BMC, Smith-Unna RD, Hibberd JM (2014) Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. PLoS Genet 10(6):e1004365CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Met 57:289–300Google Scholar
  5. Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062CrossRefPubMedGoogle Scholar
  6. Bohrer AS, Yoshimoto N, Sekiguchi A, Rykulski N, Saito K, Takahashi H (2015) Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Front Plant Sci 5:750PubMedPubMedCentralGoogle Scholar
  7. Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438CrossRefPubMedGoogle Scholar
  8. Brautigam A, Hoffmann-Benning S, Weber APM (2008) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol 148:568–579CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brautigam A et al (2011) An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155:142–156CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bromham L, Bennett T (2014) Salt tolerance evolves more frequently in C4 grass lineages. J Evol Biol 27:653–659CrossRefPubMedGoogle Scholar
  11. Burgess AL, David R, Searle IR (2015) Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC Plant Biol 15:199CrossRefPubMedPubMedCentralGoogle Scholar
  12. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST plus: architecture and applications. BMC Bioinform 10:421CrossRefGoogle Scholar
  13. Charron JBF, Ouellet F, Houde M, Sarhan F (2008) The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8:86CrossRefPubMedPubMedCentralGoogle Scholar
  14. Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18:37–43CrossRefPubMedGoogle Scholar
  15. Christin PA et al (2013) Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc Natl Acad Sci USA 110:1381–1386CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ciftci-Yilmaz S et al (2007) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282:9260–9268CrossRefPubMedGoogle Scholar
  17. Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:229CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097CrossRefPubMedPubMedCentralGoogle Scholar
  19. Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dubois E et al (2011) Homologous recombination is stimulated by a decrease in dUTPase in Arabidopsis. PLoS One 6:e18658CrossRefPubMedPubMedCentralGoogle Scholar
  21. Edwards GE, Ku MS (1987) Biochemistry of C3–C4 intermediates. Biochem Plants 10:275–325Google Scholar
  22. Edwards EJ, Smith SA (2010) Phylogenetic analyses reveal the shady history of C4 grasses. Proc Natl Acad Sci USA 107:2532–2537CrossRefPubMedPubMedCentralGoogle Scholar
  23. Elhiti M, Hebelstrup KH, Wang AM, Li CL, Cui YH, Hill RD, Stasolla C (2013) Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. Plant J 74:946–958CrossRefPubMedGoogle Scholar
  24. Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9:453–462CrossRefPubMedPubMedCentralGoogle Scholar
  25. Flugge UI, Hausler RE, Ludewig F, Gierth M (2011) The role of transporters in supplying energy to plant plastids. J Exp Bot 62:2381–2392CrossRefPubMedGoogle Scholar
  26. Fucile G, Falconer S, Christendat D (2008) Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 4:e1000292CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gepstein S et al (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642CrossRefPubMedGoogle Scholar
  28. Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goepfert S, Hiltunen JK, Poirier Y (2006) Identification and functional characterization of a monofunctional peroxisomal enoyl-CoA hydratase 2 that participates in the degradation of even cis-unsaturated fatty acids in Arabidopsis thaliana. J Biol Chem 281:35894–35903CrossRefPubMedGoogle Scholar
  30. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122:1–13CrossRefGoogle Scholar
  31. Gowik U, Brautigam A, Weber KL, Weber APM, Westhoff P (2011) Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it yake to make C4? Plant Cell 23:2087–2105CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  33. Griffiths H, Weller G, Toy LFM, Dennis RJ (2013) You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ 36:249–261CrossRefPubMedGoogle Scholar
  34. Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:7–12CrossRefPubMedPubMedCentralGoogle Scholar
  35. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol 50:473–503CrossRefGoogle Scholar
  36. Irshad M, Canut H, Borderies G, Pont-Lezica R, Jamet E (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol 8:94CrossRefPubMedPubMedCentralGoogle Scholar
  37. John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM (2014) Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol 165:62–75CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jung HS, Niyogi KK (2010) Mutations in Arabidopsis YCF20-like genes affect thermal dissipation of excess absorbed light energy. Planta 231:923–937CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 49–87CrossRefGoogle Scholar
  40. Knappe S, Lottgert T, Schneider A, Voll L, Flugge UI, Fischer K (2003) Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J 36:411–420CrossRefPubMedGoogle Scholar
  41. Kraszewska E (2008) The plant nudix hydrolase family. Acta Biochim Pol 55:663–671PubMedGoogle Scholar
  42. Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lamesch P et al (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lampl N, Alkan N, Davydov O, Fluhr R (2013) Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant J 74:498–510CrossRefPubMedGoogle Scholar
  45. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform 12:323CrossRefGoogle Scholar
  46. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357CrossRefPubMedPubMedCentralGoogle Scholar
  48. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105CrossRefPubMedGoogle Scholar
  49. Majeran W, van Wijk KJ (2009) Cell-type-specific differentiation of chloroplasts in C4 plants. Trends Plant Sci 14:100–109CrossRefPubMedGoogle Scholar
  50. Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber AP, Westhoff P, Gowik U (2014) The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. Elife 3:e02478CrossRefPubMedPubMedCentralGoogle Scholar
  51. McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am J Bot 92:1911–1928CrossRefPubMedGoogle Scholar
  52. Meyer K, Stecca KL, Ewell-Hicks K, Allen SM, Everard JD (2012) Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. Plant Physiol 159:1221–1234CrossRefPubMedPubMedCentralGoogle Scholar
  53. Monson RK, Schuster WS, Ku MSB (1987) Photosynthesis in Flaveria brownii Powell, A.M.: a C4-like C3–C4 intermediate. Plant Physiol 85:1063–1067CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakamura N, Iwano M, Havaux M, Yokota A, Munekage YN (2013) Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type C4 photosynthesis in the genus Flaveria. New Phytol 199:832–842CrossRefPubMedGoogle Scholar
  55. Ogawa T, Ueda Y, Yoshimura K, Shigeoka S (2005) Comprehensive analysis of cytosolic nudix hydrolases in Arabidopsis thaliana. J Biol Chem 280:25277–25283CrossRefPubMedGoogle Scholar
  56. Ogawa T, Yoshimura K, Miyake H, Ishikawa K, Ito D, Tanabe N, Shigeoka S (2008) Molecular characterization of organelle-type nudix hydrolases in Arabidopsis. Plant Physiol 148:1412–1424CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009) Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant J 57:289–301CrossRefPubMedGoogle Scholar
  58. Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans R Soc Lond B Biol Sci 361:173–194CrossRefPubMedPubMedCentralGoogle Scholar
  59. Osborne CP, Freckleton RP (2009) Ecological selection pressures for C4 photosynthesis in the grasses. Proc R Soc Lond B Biol 276:1753–1760CrossRefGoogle Scholar
  60. Ripley BS, Gilbert ME, Ibrahim DG, Osborne CP (2007) Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J Exp Bot 58:1351–1363CrossRefPubMedGoogle Scholar
  61. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000CrossRefPubMedGoogle Scholar
  63. Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol 3:202–213CrossRefGoogle Scholar
  64. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161(2):341–370CrossRefGoogle Scholar
  65. Sage RF, Christin PA, Edwards EJ (2011) The C4 plant lineages of planet Earth. J Exp Bot 62:3155–3169CrossRefPubMedGoogle Scholar
  66. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47CrossRefPubMedGoogle Scholar
  67. Sage TL et al (2013) Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. Plant Physiol 163:1266–1276CrossRefPubMedPubMedCentralGoogle Scholar
  68. Simkin AJ et al (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914CrossRefPubMedGoogle Scholar
  69. Stanley Kim H et al (2005) Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant J 41:212–220CrossRefPubMedGoogle Scholar
  70. Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488CrossRefPubMedGoogle Scholar
  71. Taylor-Teeples M et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571-U307Google Scholar
  72. Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939CrossRefPubMedGoogle Scholar
  73. Tholen D, Boom C, Zhu XG (2012) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101CrossRefPubMedGoogle Scholar
  74. Tyra HM, Linka M, Weber AP, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212CrossRefPubMedPubMedCentralGoogle Scholar
  75. Uga Y et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102CrossRefPubMedGoogle Scholar
  76. Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117CrossRefPubMedGoogle Scholar
  77. Wang H, Zhu YY, Fujioka S, Asami T, Li JY, Li JM (2009) Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell 21:3781–3791CrossRefPubMedPubMedCentralGoogle Scholar
  78. Weber APM, von Caemmerer S (2010) Plastid transport and metabolism of C3 and C4 plants: comparative analysis and possible biotechnological exploitation. Curr Opin Plant Biol 13:257–265CrossRefPubMedGoogle Scholar
  79. Weng JK, Li Y, Mo HP, Chapple C (2012) Assembly of an evolutionarily new pathway for alpha-pyrone biosynthesis in Arabidopsis. Science 337:960–964CrossRefPubMedGoogle Scholar
  80. Williams BP, Johnston IG, Covshoff S, Hibberd JM (2013) Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife 2:e00961PubMedPubMedCentralGoogle Scholar
  81. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CAS-Key Laboratory for Computational Biology and State Key Laboratory for Hybrid Rice, Partner Institute for Computational Biology, Shanghai Institute for Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations