Plant Molecular Biology

, Volume 90, Issue 6, pp 689–697 | Cite as

Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria

  • Fernanda P. do Amaral
  • Vânia C. S. Pankievicz
  • Ana Carolina M. Arisi
  • Emanuel M. de Souza
  • Fabio Pedrosa
  • Gary StaceyEmail author


Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.


Brachypodium distachyon Plant-beneficial bacteria interaction Azospirillum brasilense Herbaspirillum seropedicae 



Research was financially supported by the National Institute of Science and Technology-Biological Nitrogen Fixation, INCT-FBN, through the Brazilian Research Council—CNPq/MCT and the Cîencia Sem Fronteiras Program, Brazil (fellowships supporting F.P.A and. V.C S.P). Support was also provided by grants DE-FOA-0000223 and DESC0013978 (to G.S.) from the Department of Energy, Office of Biological and Environmental Research.

Author contribution

F.P.A. participated in this study, its design and coordination, performed the experiments, data collection, interpretation of the data and drafted the manuscript; V.C.S.P. participated in the experiment perform and data collection specially in the microscopy figures; A.C.M.A. participated in the design and coordination of the study; E.M.S. participated in the design and coordination of the study and performed the measurement; F.P. participated in the design and coordination of the study; G.S. conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Supplementary material

11103_2016_449_MOESM1_ESM.pdf (77 kb)
Supplementary material 1 (PDF 77 kb)
11103_2016_449_MOESM2_ESM.pdf (473 kb)
Supplementary material 2 (PDF 473 kb)

Supplementary material 3 (MOV 783 kb)


  1. Amaral FP et al (2014) Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae. Symbiosis 62:41–50CrossRefGoogle Scholar
  2. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570CrossRefPubMedGoogle Scholar
  3. Baldani JI et al (1986) Characterization of Herbaspirillum seropedicae gen-nov, sp-nov, a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36(1):86–93CrossRefGoogle Scholar
  4. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577CrossRefPubMedGoogle Scholar
  5. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13CrossRefPubMedGoogle Scholar
  6. Bluemke A et al (2015) Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Mol Plant Pathol 16(5):472–483CrossRefGoogle Scholar
  7. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10(4):e1004283. doi: 10.1371/journal.pgen.100428 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brkljacic J et al (2011) Brachypodium as a model for the grasses: today and the future. Plant Physiol 157(1):3–13CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brusamarello-Santos LCC (2013) Análise do transcriptoma total de raízes de plântulas de arroz (Oryza sativa L.) colonizadas por Herbaspirillum seropedicae SmR1. Dissertation. Federal University of Curitiba, BrazilGoogle Scholar
  10. Brusamarello-Santos LCC et al (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356(1–2):113–125CrossRefGoogle Scholar
  11. Brutnell TP et al (2010) Setaria viridis: a model for C-4 photosynthesis. Plant Cell 22(8):2537–2544CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brutnell T, Bennetzen J, Vogel J (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485CrossRefPubMedGoogle Scholar
  13. Camilios-Neto D et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genom 15(378):1471–2164Google Scholar
  14. Dobbelaere S et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28(9):871–879Google Scholar
  15. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149CrossRefGoogle Scholar
  16. Dobereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum-Lipoferum Beijerinck. Can J Microbiol 22(10):1464–1473CrossRefPubMedGoogle Scholar
  17. Draper J et al (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127(4):1539–1555CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferrari CS et al (2014) Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) Roots-bacteria interaction revealed using proteomics. Appl Biochem Biotech 174(6):2267–2277CrossRefGoogle Scholar
  19. Gagne-Bourque F et al (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS ONE 10(6):e0130456. doi: 10.1371/journal.pone.0130456 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33(5):410–415CrossRefGoogle Scholar
  21. Haney C et al (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:1–9. doi: 10.1038/nplants.2015.51 Google Scholar
  22. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119CrossRefGoogle Scholar
  23. James EK et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15(9):894–906CrossRefPubMedGoogle Scholar
  24. Klassen G et al (1997) Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Can J Microbiol 43(9):887–891CrossRefGoogle Scholar
  25. Machado HB et al (1991) Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can J Microbiol 37:549–553CrossRefGoogle Scholar
  26. Mitter B et al (2013) Advances in elucidating Beneficial interactions between plants, soil, and bacteria. Adv Agron 121:381–445CrossRefGoogle Scholar
  27. Monteiro RA et al (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31(4):932–937CrossRefGoogle Scholar
  28. Moutia JFY et al (2010) Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337(1–2):233–242CrossRefGoogle Scholar
  29. Pacheco-Villalobos D, Hardtke CS (2012) Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Philos Trans R Soc B Biol Sci 367(1595):1552–1558CrossRefGoogle Scholar
  30. Pankievicz VCS et al (2015) Robust biological nitrogen fixation in a model grass-bacterial association. Plant J 81:907–919CrossRefPubMedGoogle Scholar
  31. Pereira TP et al (2014) Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae Strain SmR1 in Maize Roots. Mol Biotechnol 56(7):660–670PubMedGoogle Scholar
  32. Philippot L et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799CrossRefPubMedGoogle Scholar
  33. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443CrossRefPubMedGoogle Scholar
  34. Richardson AE et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRefGoogle Scholar
  35. Sandoya GV, Buanafina MMO (2014) Differential responses of Brachypodium distachyon genotypes to insect and fungal pathogens. Physiol Mol Plant Pathol 85:53–64CrossRefGoogle Scholar
  36. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schmidt MA et al (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44(3):182–185CrossRefPubMedGoogle Scholar
  38. Shi H et al (2015) Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta PhysiolPlant 37(6). doi: 10.1007/s11738-015-1873-0 Google Scholar
  39. Souza E et al (2014) Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proc. doi: 10.1186/1753-6561-8-S4-O23 Google Scholar
  40. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506CrossRefPubMedGoogle Scholar
  41. Tarrand JJ, Krieg NR, Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24(8):967–980CrossRefPubMedGoogle Scholar
  42. Vain P (2011) Brachypodium as a model system for grass research. J Cereal Sci 54(1):1–7CrossRefGoogle Scholar
  43. Vargas L et al (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356(1–2):127–137CrossRefGoogle Scholar
  44. Verelst W et al (2013) Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6(2):311–322CrossRefPubMedGoogle Scholar
  45. Verhagen BWM et al (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17(8):895–908CrossRefPubMedGoogle Scholar
  46. Vogel JP et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768CrossRefGoogle Scholar
  47. Zamioudis C et al (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. Bacteria. Plant Physiol 162(1):304–318CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fernanda P. do Amaral
    • 1
  • Vânia C. S. Pankievicz
    • 2
  • Ana Carolina M. Arisi
    • 3
  • Emanuel M. de Souza
    • 2
  • Fabio Pedrosa
    • 2
  • Gary Stacey
    • 1
    Email author
  1. 1.Divisions of Plant Science and Biochemistry, C. S. Bond Life Science CenterUniversity of MissouriColumbiaUSA
  2. 2.Department of Biochemistry and Molecular BiologyFederal University of ParanáCuritibaBrazil
  3. 3.Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations