Advertisement

Plant Molecular Biology

, Volume 90, Issue 4–5, pp 453–466 | Cite as

Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis

  • Clémentine Laurent
  • Gilles Lekeux
  • Ashwinie A. Ukuwela
  • Zhiguang Xiao
  • Jean-Benoit Charlier
  • Bernard Bosman
  • Monique Carnol
  • Patrick Motte
  • Christian Damblon
  • Moreno Galleni
  • Marc HanikenneEmail author
Article

Abstract

PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases.

Keywords

Metal P-type ATPase Metal binding domain Zinc transport Structure–function analysis Arabidopsis 

Notes

Acknowledgments

We thank Dr. C. Nouet, S. Fanara, M. Schloesser and M.C. Requier for technical support. Prof. A. Wedd is thanked for his constructive comments and suggestions. We thank Dr. M. Haydon for the kind gift of hma2hma4 seeds. Funding was provided by the “Fonds de la Recherche Scientifique–FNRS” (FRFC-2.4583.08, PDR-T.0206.13) (MH, MG), the University of Liège (SFRD-12/03) (MH), the Belgian Program on Interuniversity Poles of Attraction (IAP no. P6/19) and the Australian Research Council (Grant DP130100728) (AAU, ZX). MH is Research Associate of the FNRS. Doctoral fellowships were funded by the FNRS (CL) and the “Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture” (GL, JBC).

Author contribution

MG and MH conceived and directed the study. MH, MG, CD and ZX designed experiments. CL, GL, JBC, BB, AAU, ZX and CD performed experiments. CL, MH, CD, GL, BB, AAU and ZX analysed the data. MH, MG, CD, AAU, ZX, PM and MC contributed reagents/materials/analysis tools. MH, CL and MG wrote the paper and all authors commented on the manuscript.

Supplementary material

11103_2016_429_MOESM1_ESM.pdf (465 kb)
Supplementary material 1 (PDF 465 kb)

References

  1. Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251. doi: 10.1105/tpc.104.030452 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrés-Colás N et al (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236CrossRefPubMedGoogle Scholar
  3. Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108CrossRefPubMedGoogle Scholar
  4. Argüello JM, Eren E, Gonzàlez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248. doi: 10.1007/s10534-006-9055-6 CrossRefPubMedGoogle Scholar
  5. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-Type ATPase superfamily. J Mol Evol 46:84–101. doi: 10.1007/pl00006286 CrossRefPubMedGoogle Scholar
  6. Baekgaard L et al (2010) A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 285:31243–31252. doi: 10.1074/jbc.M110.111260 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O’Halloran TV (2002) A new Zinc–protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46–118). J Mol Biol 323:883–897. doi: 10.1016/S0022-2836(02)01007-0 CrossRefPubMedGoogle Scholar
  8. Banci L et al (2006) Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. J Mol Biol 356:638–650. doi: 10.1016/j.jmb.2005.11.055 CrossRefPubMedGoogle Scholar
  9. Barry AN, Shinde U, Lutsenko S (2010) Structural organization of human Cu-transporting ATPases: learning from building blocks. J Biol Inorg Chem 15:47–59. doi: 10.1007/s00775-009-0595-4 CrossRefPubMedGoogle Scholar
  10. Baum D (2013) The origin of primary plastids: a pas de deux or a ménage à trois? Plant Cell 25:4–6. doi: 10.1105/tpc.113.109496 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bernal M, Testillano PS, Alfonso M, del Carmen Risueño M, Picorel R, Yruela I (2007) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. J Struct Biol 158:46–58. doi: 10.1016/j.jsb.2006.10.016 CrossRefPubMedGoogle Scholar
  12. Boutigny S et al (2014) HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. J Exp Bot 65:1529–1540. doi: 10.1093/jxb/eru020 CrossRefPubMedGoogle Scholar
  13. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRefPubMedGoogle Scholar
  14. Cavanagh J, Fairbrother WE, Palmer AG III, Skelton NJ (1996) Protein NMR Spectroscopy Principles and Practice. San DiegoGoogle Scholar
  15. Chan H et al (2010) The p-type ATPase superfamily. J Mol Microbiol Biotechnol 19:5–104. doi: 10.1159/000319588 CrossRefPubMedGoogle Scholar
  16. Charlier JB et al (2015) Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives. J Exp Bot 66:3865–3878. doi: 10.1093/jxb/erv188 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x CrossRefPubMedGoogle Scholar
  18. Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065. doi: 10.1104/pp.106.095133 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Craciun AR, Meyer C-L, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012) Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot 63:4179–4189. doi: 10.1093/jxb/ers104 CrossRefPubMedGoogle Scholar
  20. Cun P et al (2014) Modulation of Zn/Cd P(1B2)-ATPase activities in Arabidopsis impacts differently on Zn and Cd contents in shoots and seeds. Metallomics 6:2109–2116. doi: 10.1039/c4mt00182f CrossRefPubMedGoogle Scholar
  21. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469CrossRefPubMedPubMedCentralGoogle Scholar
  22. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17CrossRefPubMedPubMedCentralGoogle Scholar
  23. Drees SL, Beyer DF, Lenders-Lomscher C, Lübben M (2015) Distinct functions of serial metal-binding domains in the Escherichia coli P1B-ATPase CopA. Mol Microbiol 97:423–438. doi: 10.1111/mmi.13038 CrossRefPubMedGoogle Scholar
  24. Eren E, González-Guerrero M, Kaufman BM, Argüello JM (2007) Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Biochemistry 46:7754–7764. doi: 10.1021/bi7001345 CrossRefPubMedGoogle Scholar
  25. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270CrossRefPubMedGoogle Scholar
  26. Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50CrossRefPubMedGoogle Scholar
  27. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613. doi: 10.1093/jxb/erg303 CrossRefPubMedGoogle Scholar
  28. Hanikenne M, Baurain D (2014) Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). Front Plant Sci 4:544. doi: 10.3389/fpls.2013.00544 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259CrossRefPubMedGoogle Scholar
  30. Hanikenne M, Krämer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 137:428–446. doi: 10.1104/pp.104.054189 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hanikenne M et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395. doi: 10.1038/nature06877 CrossRefPubMedGoogle Scholar
  32. Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U (2013) Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 9:1–13CrossRefGoogle Scholar
  33. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hussain D et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339. doi: 10.1105/tpc.020487 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753. doi: 10.1111/j.1365-313X.2009.03818.x CrossRefPubMedGoogle Scholar
  36. Kobayashi Y et al (2008) Amino acid polymorphisms in strictly conserved domains of a P-Type ATPase HMA5 are involved in the mechanism of copper tolerance variation in arabidopsis. Plant Physiol 148:969–980CrossRefPubMedPubMedCentralGoogle Scholar
  37. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi: 10.1146/annurev-arplant-042809-112156 CrossRefPubMedGoogle Scholar
  38. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272. doi: 10.1016/j.febslet.2007.04.010 CrossRefPubMedGoogle Scholar
  39. Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295. doi: 10.1038/nrm1354 CrossRefPubMedGoogle Scholar
  40. Lian L-Y et al (2000) Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1. Structure 8:47–56. doi: 10.1016/S0969-2126(00)00080-0 CrossRefPubMedGoogle Scholar
  41. Lutsenko S, Petris MJ (2003) Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J Membr Biol 191:1–12CrossRefPubMedGoogle Scholar
  42. Mana-Capelli S, Mandal AK, Argüello JM (2003) Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541. doi: 10.1074/jbc.M306907200 CrossRefPubMedGoogle Scholar
  43. Mandal AK, Mikhailova L, Argüello JM (2003) The Na, K-ATPase S5–H5 helix: structural link between phosphorylation and cation-binding sites. Ann N Y Acad Sci 986:224–225CrossRefPubMedGoogle Scholar
  44. Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176CrossRefPubMedGoogle Scholar
  45. Mills RF, Valdes B, Duke M, Peaston KA, Lahner B, Salt DE, Williams LE (2010) Functional significance of AtHMA4 C-terminal domain in planta. PLoS ONE 5:e13388. doi: 10.1371/journal.pone.0013388 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moreno I et al (2008) AtHMA1 is a thapsigargin sensitive Ca2+/heavy metal pump. J Biol Chem 283:9633–9641CrossRefPubMedGoogle Scholar
  47. Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16:395–404. doi: 10.1016/j.tplants.2011.03.005 CrossRefPubMedGoogle Scholar
  48. Nouet C, Charlier JB, Carnol M, Bosman B, Farnir F, Motte P, Hanikenne M (2015) Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66:5783–5795. doi: 10.1093/jxb/erv280 CrossRefPubMedPubMedCentralGoogle Scholar
  49. O’Lochlainn S et al (2011) Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS ONE 6:e17814CrossRefGoogle Scholar
  50. Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340CrossRefPubMedPubMedCentralGoogle Scholar
  51. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266. doi: 10.1146/annurev.biophys.093008.131331 CrossRefPubMedGoogle Scholar
  52. Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Front Plant Sci 3:31. doi: 10.3389/fpls.2012.00031 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P (2010) Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiol 153:273–284. doi: 10.1104/pp.110.154740 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Seigneurin-Berny D et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892. doi: 10.1074/jbc.M508333200 CrossRefPubMedGoogle Scholar
  55. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 10.1007/s10858-009-9333-z CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346CrossRefPubMedPubMedCentralGoogle Scholar
  57. Siemianowski O, Barabasz A, Weremczuk A, Ruszczyńska A, Bulska EWA, Williams LE, Antosiewicz DM (2013) Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels. Plant, Cell Environ 36:1093–1104. doi: 10.1111/pce.12041 CrossRefGoogle Scholar
  58. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167. doi: 10.1104/pp.105.076232 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tavel L et al (2012) Ligand binding study of human PEBP1/RKIP: interaction with nucleotides and Raf-1 peptides evidenced by NMR and mass spectrometry. PLoS ONE 7:e36187. doi: 10.1371/journal.pone.0036187 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2CrossRefPubMedPubMedCentralGoogle Scholar
  61. Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476:3–11. doi: 10.1016/j.abb.2008.04.017 CrossRefPubMedGoogle Scholar
  62. Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946. doi: 10.1016/j.bbamcr.2008.10.008 CrossRefPubMedGoogle Scholar
  63. Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292. doi: 10.1146/annurev.biochem.73.011303.073700 CrossRefPubMedGoogle Scholar
  64. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611. doi: 10.1038/nature00944 CrossRefPubMedGoogle Scholar
  65. Tsivkovskii R, MacArthur BC, Lutsenko S (2001) The Lys 1010-Lys1325 fragment of the Wilson’s disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem 276:2234–2242. doi: 10.1074/jbc.M003238200 CrossRefPubMedGoogle Scholar
  66. Tuerk MJ, Fazel N (2009) Zinc deficiency. Curr Opin Gastroenterol 25:136–143. doi: 10.1097/MOG.0b013e328321b395 CrossRefPubMedGoogle Scholar
  67. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034Google Scholar
  68. Veldhuis N, Gaeth A, Pearson R, Gabriel K, Camakaris J (2009) The multi-layered regulation of copper translocating P-type ATPases. Biometals 22:177–190. doi: 10.1007/s10534-008-9183-2 CrossRefPubMedGoogle Scholar
  69. Verret F et al (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312CrossRefPubMedGoogle Scholar
  70. Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515–1522CrossRefPubMedGoogle Scholar
  71. Wang K et al (2014) Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514:518–522. doi: 10.1038/nature13618 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674. doi: 10.1534/genetics.106.064485 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Williams LE, Mills RF (2005) P(1B)-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502. doi: 10.1016/j.tplants.2005.08.008 CrossRefPubMedGoogle Scholar
  74. Williamson RA, Carr MD, Frenkiel TA, Feeney J, Freedman RB (1997) Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 36:13882–13889. doi: 10.1021/bi9712091 CrossRefPubMedGoogle Scholar
  75. Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78. doi: 10.1111/j.1469-8137.2008.02638.x CrossRefPubMedGoogle Scholar
  76. Wong CK, Jarvis RS, Sherson SM, Cobbett CS (2009) Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytol 181:79–88. doi: 10.1111/j.1469-8137.2008.02637.x CrossRefPubMedGoogle Scholar
  77. Xiao Z, Gottschlich L, van der Meulen R, Udagedara SR, Wedd AG (2013) Evaluation of quantitative probes for weaker Cu(I) binding sites completes a set of four capable of detecting Cu(I) affinities from nanomolar to attomolar. Metallomics 5:501–513. doi: 10.1039/c3mt00032j CrossRefPubMedGoogle Scholar
  78. Zimmermann M et al (2009) Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry 48:11640–11654. doi: 10.1021/bi901573b CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Clémentine Laurent
    • 1
  • Gilles Lekeux
    • 1
  • Ashwinie A. Ukuwela
    • 2
  • Zhiguang Xiao
    • 2
  • Jean-Benoit Charlier
    • 1
  • Bernard Bosman
    • 3
  • Monique Carnol
    • 3
  • Patrick Motte
    • 1
    • 4
  • Christian Damblon
    • 5
  • Moreno Galleni
    • 1
  • Marc Hanikenne
    • 1
    • 4
    Email author
  1. 1.Department of Life Sciences, Center for Protein Engineering (CIP)University of LiègeLiègeBelgium
  2. 2.School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleAustralia
  3. 3.Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, EvolutionUniversity of LiègeLiègeBelgium
  4. 4.PhytoSYSTEMSUniversity of LiègeLiègeBelgium
  5. 5.Chimie Biologique Structurale, Department of ChemistryUniversity of LiègeLiègeBelgium

Personalised recommendations