Plant Molecular Biology

, Volume 89, Issue 4–5, pp 365–384 | Cite as

Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis

  • Sung Don Lim
  • Chang Gyo Jung
  • Yong Chan Park
  • Sung Chul Lee
  • Chanhui Lee
  • Chae Woo Lim
  • Dong Sub Kim
  • Cheol Seong Jang


Although a number of RING E3 ligases in plants have been demonstrated to play key roles in a wide range of abiotic stresses, relatively few studies have detailed how RING E3 ligases exert their cellular actions. We describe Oryza sativa RING finger protein with microtubule-targeting domain 1 (OsRMT1), a functional RING E3 ligase that is likely involved in a salt tolerance mechanism. Functional characterization revealed that OsRMT1 undergoes homodimer formation and subsequently autoubiquitination-mediated protein degradation under normal conditions. By contrast, OsRMT1 is predominantly found in the nucleus and microtubules and its degradation is inhibited under salt stress. Domain dissection of OsRMT1 indicates that the N-terminal domain is required for microtubule targeting. Bimolecular fluorescence complementation analysis and degradation assay revealed that OsRMT1-interacted proteins localized in various organelles were degraded via the ubiquitin (Ub)/26S proteasome-dependent pathway. Interestingly, when OsRMT1 and its target proteins were co-expressed in N. benthamiana leaves, the protein–protein interactions appeared to take place mainly in the microtubules. Overexpression of OsRMT1 in Arabidopsis resulted in increased tolerance to salt stress. Our findings suggest that the abundance of microtubule-associated OsRMT1 is strictly regulated, and OsRMT1 may play a relevant role in salt stress response by modulating levels of its target proteins.


Microtubules Rice RING E3 ligase Salt stress Ubiquitination 



This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01115201)” Rural Development Administration, Republic of Korea, and a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A4A01011064).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11103_2015_375_MOESM1_ESM.pptx (26.9 mb)
Supplementary material 1 (PPTX 27560 kb)
11103_2015_375_MOESM2_ESM.avi (20 mb)
Supplementary material 2 (AVI 20488 kb)
11103_2015_375_MOESM3_ESM.xlsx (16 kb)
Supplementary material 3 (XLSX 15 kb)


  1. Ahn JC, Kim DW, You YN, Seok MS, Park JM, Hwang H, Kim BG, Luan S, Park HS, Cho HS (2010) Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10:253PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782   CrossRefPubMedGoogle Scholar
  3. Ben-Nissan G, Cui W, Kim DJ, Yang Y, Yoo BC, Lee JY (2008) Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol 148:1897–1907PubMedCentralCrossRefPubMedGoogle Scholar
  4. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chitalia V, Shivanna S, Martorell J, Meyer R, Edelman E, Rahimi N (2013) c-CBl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation. J Biol Chem 288:23505–23517CrossRefPubMedGoogle Scholar
  6. Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27PubMedCentralCrossRefPubMedGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  8. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17PubMedCentralCrossRefPubMedGoogle Scholar
  9. de Souza Filho GA, Ferreira BS, Dias JM, Queiroz KS, Branco AT, Bressan-Smith RE, Oliveira JG, Garcia AB (2003) Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci 164:623–628CrossRefGoogle Scholar
  10. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361CrossRefPubMedGoogle Scholar
  11. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434CrossRefPubMedGoogle Scholar
  12. Du H, Huang Y, Zaghlula M, Walters E, Cox TC, Massiah MA (2013) The MID1 E3 ligase catalyzes the polyubiquitination of Alpha4 (alpha4), a regulatory subunit of protein phosphatase 2A (PP2A): novel insights into MID1-mediated regulation of PP2A. J Biol Chem 288:21341–21350PubMedCentralCrossRefPubMedGoogle Scholar
  13. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484CrossRefPubMedGoogle Scholar
  14. Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl Stress in Rice. Plant Physiol 115:159–169PubMedCentralPubMedGoogle Scholar
  15. Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F (2012a) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J 69:946–956CrossRefPubMedGoogle Scholar
  16. Hayashi S, Wakasa Y, Takaiwa F (2012b) Functional integration between defence and IRE1-mediated ER stress response in rice. Sci Rep 2:670PubMedCentralCrossRefPubMedGoogle Scholar
  17. Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797CrossRefPubMedGoogle Scholar
  18. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172CrossRefPubMedGoogle Scholar
  19. Iliev AI, Wouters FS (2007) Application of simple photobleaching microscopy techniques for the determination of the balance between anterograde and retrograde axonal transport. J Neurosci Methods 161:39–46CrossRefPubMedGoogle Scholar
  20. Iyengar PV, Hirota T, Hirose S, Nakamura N (2011) Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 286:39082–39090PubMedCentralCrossRefPubMedGoogle Scholar
  21. Kaiser P, Flick K, Wittenberg C, Reed SI (2000) Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102:303–314CrossRefPubMedGoogle Scholar
  22. Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872CrossRefPubMedGoogle Scholar
  24. Knipscheer P, Sixma TK (2007) Protein–protein interactions regulate Ubl conjugation. Curr Opin Struct Biol 17:665–673CrossRefPubMedGoogle Scholar
  25. Kurepa J, Wang S, Li Y, Smalle J (2009) Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav 4:924–927PubMedCentralCrossRefPubMedGoogle Scholar
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  27. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158PubMedCentralCrossRefPubMedGoogle Scholar
  29. Lim SD, Yim WC, Moon JC, Kim DS, Lee BM, Jang CS (2010) A gene family encoding RING finger proteins in rice: their expansion, expression diversity, and co-expressed genes. Plant Mol Biol 72:369–380CrossRefPubMedGoogle Scholar
  30. Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013a) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914PubMedCentralCrossRefPubMedGoogle Scholar
  31. Lim SD, Hwang JG, Jung CG, Hwang SG, Moon JC, Jang CS (2013b) Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res 20:299–314PubMedCentralCrossRefPubMedGoogle Scholar
  32. Lim SD, Lee SC, Jang CS (2014) The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. Plant Cell Environ 37:1097–1113CrossRefPubMedGoogle Scholar
  33. Littlejohn GR, Gouveia JD, Edner C, Smirnoff N, Love J (2010) Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytol 186:1018–1025CrossRefPubMedGoogle Scholar
  34. Liu H, Stone SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22:2630–2641PubMedCentralCrossRefPubMedGoogle Scholar
  35. Liu L, Zhang Y, Tang S, Zhao Q, Zhang Z, Zhang H, Dong L, Guo H, Xie Q (2010) An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J 61:893–903CrossRefPubMedGoogle Scholar
  36. Liu L, Cui F, Li Q, Yin B, Zhang H, Lin B, Wu Y, Xia R, Tang S, Xie Q (2011) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 21:957–969PubMedCentralCrossRefPubMedGoogle Scholar
  37. Milosavljevic D, Kontush A, Griglio S, Le Naour G, Thillet J, Chapman MJ (2003) VLDL-induced triglyceride accumulation in human macrophages is mediated by modulation of LPL lipolytic activity in the absence of change in LPL mass. Biochim Biophys Acta 1631:51–60CrossRefPubMedGoogle Scholar
  38. Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259PubMedCentralCrossRefPubMedGoogle Scholar
  39. Moor RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128CrossRefGoogle Scholar
  40. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350PubMedCentralCrossRefPubMedGoogle Scholar
  41. Nogales E (2001) Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 30:397–420CrossRefPubMedGoogle Scholar
  42. Qin F, Sakuma Y, Tran LSP, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono KI, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707PubMedCentralCrossRefPubMedGoogle Scholar
  43. Rodriguez-Mallon A, Cardenas Y, Lugo JM, Oliva A, Morales A, Estrada MP (2009) Competitive RT-PCR strategy for quantitative evaluation of the expression of tilapia (Oreochromis niloticus) growth hormone receptor type I. Biol Proced Online 11:79–98 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Schepetilnikov MV, Solovyev AG, Gorshkova EN, Schiemann J, Prokhnevsky AI, Dolja VV, Morozov SY (2008) Intracellular targeting of a hordeiviral membrane-spanning movement protein: sequence requirements and involvement of an unconventional mechanism. J Virol 82:1284–1293PubMedCentralCrossRefPubMedGoogle Scholar
  45. Sedbrook JC (2004) MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7:632–640CrossRefPubMedGoogle Scholar
  46. Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT (2012) Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol 160:556–568PubMedCentralCrossRefPubMedGoogle Scholar
  47. Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168CrossRefPubMedGoogle Scholar
  48. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annl Rev Plant Biol 55:555–590CrossRefGoogle Scholar
  49. Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30PubMedCentralCrossRefPubMedGoogle Scholar
  50. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438CrossRefPubMedGoogle Scholar
  51. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957PubMedCentralCrossRefPubMedGoogle Scholar
  52. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142CrossRefPubMedGoogle Scholar
  53. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397CrossRefPubMedGoogle Scholar
  54. von Arnim AG, Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:1035–1045CrossRefGoogle Scholar
  55. Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516CrossRefPubMedGoogle Scholar
  56. Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547CrossRefPubMedGoogle Scholar
  57. Wang C, Zhang LJ, Huang RD (2011a) Cytoskeleton and plant salt stress tolerance. Plant Signal Behav 6:29–31PubMedCentralCrossRefPubMedGoogle Scholar
  58. Wang M, Xu Q, Yuan M (2011b) The unfolded protein response induced by salt stress in Arabidopsis. Methods Enzymol 489:319–328CrossRefPubMedGoogle Scholar
  59. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP (2003) Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11:1445–1456CrossRefPubMedGoogle Scholar
  60. Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, Naito T, Makino T, Yokosawa H, Tanaka K, Komamine A, Hashimoto J, Sato T, Nakagawa H (2002) Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol 43:604–613CrossRefPubMedGoogle Scholar
  61. Zeng LR, Park CH, Venu RC, Gough J, Wang GL (2008) Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1:800–815CrossRefPubMedGoogle Scholar
  62. Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929PubMedCentralCrossRefPubMedGoogle Scholar
  63. Zhang YY, Li Y, Gao T, Zhu H, Wang DJ, Zhang HW, Ning YS, Liu LJ, Wu YR, Chu CC, Guo HS, Xie Q (2008) Arabidopsis SDIR1 enhances drought tolerance in crop plants. Biosci Biotechnol Biochem 72:2251–2254CrossRefPubMedGoogle Scholar
  64. Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sung Don Lim
    • 1
  • Chang Gyo Jung
    • 1
  • Yong Chan Park
    • 1
  • Sung Chul Lee
    • 2
  • Chanhui Lee
    • 3
  • Chae Woo Lim
    • 2
  • Dong Sub Kim
    • 4
  • Cheol Seong Jang
    • 1
  1. 1.Department of Applied Plant Sciences TechnologyKangwon National UniversityChuncheonKorea
  2. 2.School of Biological SciencesChung-Ang UniversitySeoulKorea
  3. 3.Department of Plant Environmental New ResourcesKyungHee UniversityYonginKorea
  4. 4.Adanced Radiation Technology InstituteKorea Atomic Energy Research InstituteJeongeupKorea

Personalised recommendations