Plant Molecular Biology

, Volume 89, Issue 3, pp 309–318 | Cite as

Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae

  • Sousuke ImamuraEmail author
  • Yasuko Kawase
  • Ikki Kobayashi
  • Toshiyuki Sone
  • Atsuko Era
  • Shin-ya Miyagishima
  • Mie Shimojima
  • Hiroyuki Ohta
  • Kan TanakaEmail author


Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264–269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.


Chlamydomonas reinhardtii Cyanidioschyzon merolae Lipid droplet Microalga Target of rapamycin Triacylglycerol 



We thank Ms. A. Ishiwata and Dr. M. Iwai for their technical assistance and technical advice, respectively. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid 22681010, 24117521, 25440129 and 26117711 to S.I. and Grants-in-Aid 24248061 to K.T.).

Supplementary material

11103_2015_370_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
11103_2015_370_MOESM2_ESM.pdf (858 kb)
Supplementary material 2 (PDF 858 kb)
11103_2015_370_MOESM3_ESM.doc (66 kb)
Supplementary material 3 (DOC 65 kb)
11103_2015_370_MOESM4_ESM.xls (578 kb)
Supplementary material 4 (XLS 578 kb)
11103_2015_370_MOESM5_ESM.xls (486 kb)
Supplementary material 5 (XLS 486 kb)


  1. Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692CrossRefPubMedGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  3. Boyle NR, Page MD, Liu B et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825PubMedCentralCrossRefPubMedGoogle Scholar
  4. Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73:897–909CrossRefPubMedGoogle Scholar
  5. Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161:67–83CrossRefPubMedGoogle Scholar
  6. Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39CrossRefPubMedGoogle Scholar
  7. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  8. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefPubMedGoogle Scholar
  9. Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238PubMedCentralCrossRefPubMedGoogle Scholar
  10. Crespo JL, Díaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139:1736–1749PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240CrossRefPubMedGoogle Scholar
  12. Fujii G, Imamura S, Hanaoka M, Tanaka K (2013) Nuclear-encoded chloroplast RNA polymerase sigma factor SIG2 activates chloroplast-encoded phycobilisome genes in a red alga, Cyanidioschyzon merolae. FEBS Lett 587:3354–3359CrossRefPubMedGoogle Scholar
  13. Fujii G, Imamura S, Era A, Miyagishima S, Hanaoka M, Tanaka K (2015) The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae. FEMS Microbiol Lett. doi: 10.1093/femsle/fnv063 PubMedGoogle Scholar
  14. Harris EH (1989) The Chlamydonzonas sourcebook. Academic Press, San Diego, CAGoogle Scholar
  15. Henriques R, Bögre L, Horváth B, Magyar Z (2014) Balancing act: matching growth with environment by the TOR signalling pathway. J Exp Bot 65:2691–2701CrossRefPubMedGoogle Scholar
  16. Imamura S, Hanaoka M, Tanaka K (2008) The plant-specific TFIIB-related protein, pBrp, is a general transcription factor for RNA polymerase I. EMBO J 27:2317–2327PubMedCentralCrossRefPubMedGoogle Scholar
  17. Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci USA 106:12548–12553PubMedCentralCrossRefPubMedGoogle Scholar
  18. Imamura S, Terashita M, Ohnuma M et al (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 51:707–717CrossRefPubMedGoogle Scholar
  19. Imamura S, Ishiwata A, Watanabe S, Yoshikawa H, Tanaka K (2013) Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae. Biochem Biophys Res Commun 439:264–269CrossRefPubMedGoogle Scholar
  20. Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J 12:808–819PubMedCentralCrossRefPubMedGoogle Scholar
  21. Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C (2012) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24:4670–4686PubMedCentralCrossRefPubMedGoogle Scholar
  22. Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201PubMedCentralCrossRefPubMedGoogle Scholar
  23. Madeira JB, Masuda CA, Maya-Monteiro CM, Matos GS, Montero-Lomelí M, Bozaquel-Morais BL (2015) TORC1 inhibition induces lipid droplet replenishment in yeast. Mol Cell Biol 35:737–746PubMedCentralPubMedGoogle Scholar
  24. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  25. Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277CrossRefPubMedGoogle Scholar
  26. Nozaki H, Takano H, Misumi O et al (2007) A 100 %-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120CrossRefPubMedGoogle Scholar
  28. Ohta N, Sato N, Kuroiwa T (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucl Acids Res 26:5190–5298PubMedCentralCrossRefPubMedGoogle Scholar
  29. Ohta N, Matsuzaki M, Misumi O et al (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77CrossRefPubMedGoogle Scholar
  30. Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172CrossRefPubMedGoogle Scholar
  31. Pérez-Pérez ME, Florencio FJ, Crespo JL (2010) Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152:1874–1888PubMedCentralCrossRefPubMedGoogle Scholar
  32. Ricoult SJ, Manning BD (2013) The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 14:242–251PubMedCentralCrossRefPubMedGoogle Scholar
  33. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRefPubMedGoogle Scholar
  34. Watanabe S, Ohnuma M, Sato J, Imamura S, Ohnuma M, Ohoba Y, Chibazakura T, Tanaka K, Yoshikawa H (2011) Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. J Gen Appl Microbiol 57:69–72CrossRefPubMedGoogle Scholar
  35. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sousuke Imamura
    • 1
    • 2
    Email author
  • Yasuko Kawase
    • 1
  • Ikki Kobayashi
    • 1
  • Toshiyuki Sone
    • 1
  • Atsuko Era
    • 2
    • 3
  • Shin-ya Miyagishima
    • 2
    • 3
  • Mie Shimojima
    • 4
  • Hiroyuki Ohta
    • 2
    • 4
    • 5
  • Kan Tanaka
    • 1
    • 2
    Email author
  1. 1.Chemical Resources LaboratoryTokyo Institute of TechnologyYokohamaJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Agency (JST)SaitamaJapan
  3. 3.Department of Cell GeneticsNational Institute of GeneticsMishimaJapan
  4. 4.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
  5. 5.Earth-Life Science InstituteTokyo Institute of Technology Tokyo Japan

Personalised recommendations