Plant Molecular Biology

, Volume 88, Issue 4–5, pp 459–470 | Cite as

Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis

Article

Abstract

Inducer of CBF expression 1 (ICE1) mediates the cold stress signal via an abscisic acid (ABA)-independent pathway. A possible role of ICE1 in ABA-dependent pathways was examined in this study. Seedling growth was severely reduced in a T-DNA insertion mutant of ICE1, ice1-2, when grown on 1/2 MS medium lacking sugars, but was restored to wild-type (WT) levels by supplementation with 56 mM glucose. In addition to this sugar-dependent phenotype, germination and establishment of ice1-2 were more sensitive to high glucose concentrations than in the WT. Hypersensitivity to ABA was also observed in ice1-2, suggesting its sensitivity to glucose might be mediated through the ABA signaling pathway. Glucose and ABA induced much higher expression of two genes related to ABA signal transduction, ABA-INSENSITIVE 3 (ABI3) and ABA-INSENSITIVE 4 (ABI4), in ice1-2 than in the WT during establishment. In summary, in addition to its known roles in regulating cold responses, stomatal development, and endosperm breakdown, ICE1 is a negative regulator of ABA-dependent responses.

Keywords

Inducer of CBF expression 1 (ICE1) Arabidopsis ABA HHP1 

Supplementary material

11103_2015_335_MOESM1_ESM.docx (338 kb)
Supplementary material 1 (DOCX 338 kb)

References

  1. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096PubMedCentralPubMedGoogle Scholar
  2. Baena-Gonzalez E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13:474–482. doi:10.1016/j.tplants.2008.06.006 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942. doi:10.1038/nature06069 PubMedCrossRefGoogle Scholar
  4. Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chen CC, Liang CS, Kao AL, Yang CC (2009a) HHP1 is involved in osmotic stress sensitivity in Arabidopsis. J Exp Bot 60:1589–1604. doi:10.1093/jxb/erp039 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen S, Songkumarn P, Liu J, Wang GL (2009b) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121. doi:10.1104/pp.109.137125 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen CC, Liang CS, Kao AL, Yang CC (2010) HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61:3305–3320. doi:10.1093/jxb/erq162 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cheng WH et al (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451. doi:10.1016/j.tplants.2007.07.002 PubMedCrossRefGoogle Scholar
  11. Denay G et al (2014) Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1. Development 141:1222–1227. doi:10.1242/dev.103531 PubMedCrossRefGoogle Scholar
  12. Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289. doi:10.1016/j.devcel.2014.12.023 PubMedCrossRefGoogle Scholar
  13. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984. doi:10.1105/tpc.108.063958
  14. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286. doi:10.1073/pnas.0602874103 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377. doi:10.1093/jxb/err379 PubMedCrossRefGoogle Scholar
  16. Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054PubMedCentralPubMedGoogle Scholar
  17. Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102. doi:10.1016/j.pbi.2004.11.003 PubMedCrossRefGoogle Scholar
  18. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261. doi:10.1105/tpc.4.10.1251 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54. doi:10.1111/j.1469-8137.2008.02437.x PubMedCrossRefGoogle Scholar
  20. Hsieh MH, Goodman HM (2005) A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. J Exp Bot 56:3137–3147PubMedCrossRefGoogle Scholar
  21. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression—C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924. doi:10.1105/tpc.113.112631 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Huang Y, Li CY, Biddle KD, Gibson SI (2008) Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis. BMC Plant Biol 8:104. doi:10.1186/1471-2229-8-104 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23:577–585PubMedCrossRefGoogle Scholar
  24. Kanaoka MM et al (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. Plant Cell 20:1775–1785. doi:10.1105/tpc.108.060848 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751. doi:10.1111/j.1469-8137.2012.04239.x PubMedCrossRefGoogle Scholar
  26. Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596PubMedCrossRefGoogle Scholar
  27. Lang V, Mantyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104:1341–1349PubMedCentralPubMedGoogle Scholar
  28. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175. doi:10.1105/tpc.105.035568 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406. doi:10.1105/tpc.10.8.1391 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328PubMedCrossRefGoogle Scholar
  31. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018 PubMedCrossRefGoogle Scholar
  32. Matsoukas IG (2014) Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet 5:218. doi:10.3389/fgene.2014.00218 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Matsoukas IG, Massiah AJ, Thomas B (2013) Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis plant. Cell Environ 36:1802–1811. doi:10.1111/pce.12088 CrossRefGoogle Scholar
  34. Miura K et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414. doi:10.1105/tpc.106.048397 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Moore B et al (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336. doi:10.1126/science.1080585 PubMedCrossRefGoogle Scholar
  36. Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. Arabidopsis Book 6:e0117. doi:10.1199/tab.0117 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):S185–S205PubMedCentralPubMedGoogle Scholar
  38. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441 PubMedCrossRefGoogle Scholar
  39. Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433PubMedCrossRefGoogle Scholar
  40. Rook F, Hadingham SA, Li Y, Bevan MW (2006) Sugar and ABA response pathways and the control of gene expression Plant. Cell Environ 29:426–434. doi:10.1111/j.1365-3040.2005.01477.x CrossRefGoogle Scholar
  41. Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67. doi:10.1146/annurev-arplant-050213-040251 PubMedCrossRefGoogle Scholar
  42. Sheen J (2014) Master regulators in plant glucose signaling networks. J Plant Biol 57:67–79. doi:10.1007/s12374-014-0902-7 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164 PubMedCrossRefGoogle Scholar
  44. Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161–170. doi:10.1006/bbrc.1998.9267 PubMedCrossRefGoogle Scholar
  45. Soderman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124:1752–1765PubMedCentralPubMedCrossRefGoogle Scholar
  46. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. doi:10.1111/nph.12797 PubMedCrossRefGoogle Scholar
  47. Thomashow MF (1999) PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. doi:10.1146/annurev.arplant.50.1.571 PubMedCrossRefGoogle Scholar
  48. Verdier J, Thompson RD (2008) Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant Cell Physiol 49:1263–1271. doi:10.1093/pcp/pcn116 PubMedCrossRefGoogle Scholar
  49. Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400PubMedCentralPubMedCrossRefGoogle Scholar
  50. Xiong Y, Sheen J (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287:2836–2842. doi:10.1074/jbc.M111.300749 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186. doi:10.1038/nature12030 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444 PubMedCrossRefGoogle Scholar
  53. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. doi:10.1016/j.pbi.2014.07.009 PubMedCrossRefGoogle Scholar
  54. Zhan X, Zhu JK, Lang Z (2015) Increasing freezing tolerance: kinase regulation of ICE1. Dev Cell 32:257–258. doi:10.1016/j.devcel.2015.01.004 PubMedCrossRefGoogle Scholar
  55. Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543. doi:10.1101/gad.1318705 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299PubMedCentralPubMedCrossRefGoogle Scholar
  57. Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192. doi:10.3109/07388551.2010.505910 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations