Advertisement

Plant Molecular Biology

, Volume 88, Issue 3, pp 249–267 | Cite as

Unraveling the functions of type II-prohibitins in Arabidopsis mitochondria

  • Janusz Piechota
  • Monika Bereza
  • Aleksandra Sokołowska
  • Kondrad Suszyński
  • Karolina Lech
  • Hanna Jańska
Article

Abstract

In yeast and mammals, prohibitins (PHBs) are considered as structural proteins that form a scaffold-like structure for interacting with a set of proteins involved in various processes occurring in the mitochondria. The role of PHB in plant mitochondria is poorly understood. In the study, the model organism Arabidopsis thaliana was used to identify the possible roles of type-II PHBs (homologs of yeast Phb2p) in plant mitochondria. The obtained results suggest that the plant PHB complex participates in the assembly of multisubunit complexes; namely, respiratory complex I and enzymatic complexes carrying lipoic acid as a cofactor (pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glycine decarboxylase). PHBs physically interact with subunits of these complexes. Knockout of two Arabidopsis type-II prohibitins (AtPHB2 and AtPHB6) results in a decreased abundance of these complexes along with a reduction in mitochondrial acyl carrier proteins. Also, the absence of AtPHB2 and AtPHB6 influences the expression of the mitochondrial genome and leads to the activation of alternative respiratory pathways, namely alternative oxidase and external NADH-dependent alternative dehydrogenases.

Keywords

Arabidopsis High-molecular-weight complexes Lipoic acid Mitochondria Prohibitins Respiratory chain 

Notes

Acknowledgments

This study was supported by Grants N30111932/4116 and NN303561039 funded by the Ministry of Science and Higher Education.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2015_320_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2320 kb)
11103_2015_320_MOESM2_ESM.doc (127 kb)
Supplementary material 2 (DOC 127 kb)
11103_2015_320_MOESM3_ESM.xls (323 kb)
Supplementary material 3 (XLS 323 kb)
11103_2015_320_MOESM4_ESM.xls (52 kb)
Supplementary material 4 (XLS 51 kb)

References

  1. Ahn CS, Lee JH, Reum Hwang A, Kim WT, Pai HS (2006) Prohibitin is involved in mitochondrial biogenesis in plants. Plant J 46:658–667. doi: 10.1111/j.1365-313X.2006.02726.x CrossRefPubMedGoogle Scholar
  2. Artal-Sanz M, Tavernarakis N (2009) Prohibitin and mitochondrial biology. Trends Endocrinol Metab 20:394–401. doi: 10.1016/j.tem.2009.04.004 CrossRefPubMedGoogle Scholar
  3. Artal-Sanz M, Tsang WY, Willems EM, Grivell LA, Lemire BD, van der Spek H, Nijtmans LG (2003) The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J Biol Chem 278:32091–32099. doi: 10.1074/jbc.M304877200 CrossRefPubMedGoogle Scholar
  4. Back JW et al. (2002) A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry protein science: a publication of the Protein Society. 11: 2471–2478. doi: 10.1110/ps.0212602Google Scholar
  5. Berger KH, Yaffe MP (1998) Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol 18:4043–4052PubMedCentralPubMedGoogle Scholar
  6. Birner R, Nebauer R, Schneiter R, Daum G (2003) Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine biosynthetic machinery with the prohibitin complex of Saccharomyces cerevisiae. Mol Biol Cell 14:370–383. doi: 10.1091/mbc.E02-05-0263 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bogenhagen DF, Wang Y, Shen EL, Kobayashi R (2003) Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol Cell Proteomics: MCP 2:1205–1216. doi: 10.1074/mcp.M300035-MCP200 CrossRefPubMedGoogle Scholar
  8. Bourges I et al (2004) Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. Biochem J 383:491–499. doi: 10.1042/BJ20040256 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402. doi: 10.1016/j.tcb.2007.06.005 CrossRefPubMedGoogle Scholar
  10. Chen JC, Jiang CZ, Reid MS (2005) Silencing a prohibitin alters plant development and senescence. Plant J 44:16–24. doi: 10.1111/j.1365-313X.2005.02505.x CrossRefPubMedGoogle Scholar
  11. Christians MJ, Larsen PB (2007) Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. J Exp Bot 58:2237–2248. doi: 10.1093/jxb/erm086 CrossRefPubMedGoogle Scholar
  12. Cipolat S et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175. doi: 10.1016/j.cell.2006.06.021 CrossRefPubMedGoogle Scholar
  13. Coates PJ, Nenutil R, McGregor A, Picksley SM, Crouch DH, Hall PA, Wright EG (2001) Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res 265:262–273. doi: 10.1006/excr.2001.5166 CrossRefPubMedGoogle Scholar
  14. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. doi: 10.1104/pp.105.063743 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Da Cruz S et al (2008) SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability. Biochim Biophys Acta 1783:904–911. doi: 10.1016/j.bbamcr.2008.02.006 CrossRefPubMedGoogle Scholar
  16. Delettre C et al (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109:584–591. doi: 10.1007/s00439-001-0633-y CrossRefPubMedGoogle Scholar
  17. Duvezin-Caubet S et al (2007) OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 18:3582–3590. doi: 10.1091/mbc.E07-02-0164 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583–1596. doi: 10.1091/mbc.E02-07-0399 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Gehl B, Lee CP, Bota P, Blatt MR, Sweetlove LJ (2014) An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization. Plant Physiol 164:1389–1400. doi: 10.1104/pp.113.230383 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764. doi: 10.1083/jcb.200704112 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hedtke B, Wagner I, Borner T, Hess WR (1999) Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels. Plant J 19:635–643CrossRefPubMedGoogle Scholar
  22. Ho LH et al (2007) Characterization of the regulatory and expression context of an alternative oxidase gene provides insights into cyanide-insensitive respiration during growth and development. Plant Physiol 143:1519–1533. doi: 10.1104/pp.106.091819 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kasashima K, Ohta E, Kagawa Y, Endo H (2006) Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. J Biol Chem 281:36401–36410. doi: 10.1074/jbc.M605260200 CrossRefPubMedGoogle Scholar
  24. Kasashima K, Sumitani M, Satoh M, Endo H (2008) Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res 314:988–996. doi: 10.1016/j.yexcr.2008.01.005 CrossRefPubMedGoogle Scholar
  25. Keech O, Dizengremel P, Gardeström P (2005) Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol Plant 124:403–409CrossRefGoogle Scholar
  26. Kolodziejczak M, Gibala M, Urantowka A, Janska H (2007) The significance of Arabidopsis AAA proteases for activity and assembly/stability of mitochondrial OXPHOS complexes. Physiol Plant 129:135–142. doi: 10.1111/j.1399-3054.2006.00835.x CrossRefGoogle Scholar
  27. Kuhn K et al (2009) Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21:2762–2779. doi: 10.1105/tpc.109.068536 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Kwasniak M, Majewski P, Skibior R, Adamowicz A, Czarna M, Sliwinska E, Janska H (2013) Silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in Arabidopsis mitochondria. Plant Cell 25:1855–1867. doi: 10.1105/tpc.113.111294 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237. doi: 10.1128/MCB.00074-07 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Malinowska A, Kistowski M, Bakun M, Rubel T, Tkaczyk M, Mierzejewska J, Dadlez M (2012) Diffprot-software for non-parametric statistical analysis of differential proteomics data. J Proteomics 75:4062–4073. doi: 10.1016/j.jprot.2012.05.030 CrossRefPubMedGoogle Scholar
  31. Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793:27–32. doi: 10.1016/j.bbamcr.2008.05.013 CrossRefPubMedGoogle Scholar
  32. Merkwirth C et al (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22:476–488. doi: 10.1101/gad.460708 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Meyer EH, Heazlewood JL, Millar AH (2007) Mitochondrial acyl carrier proteins in Arabidopsis thaliana are predominantly soluble matrix proteins and none can be confirmed as subunits of respiratory complex I. Plant Mol Biol 64:319–327. doi: 10.1007/s11103-007-9156-9 CrossRefPubMedGoogle Scholar
  34. Mishra S, Murphy LC, Murphy LJ (2006) The prohibitins: emerging roles in diverse functions. J Cell Mol Med 10:353–363CrossRefPubMedGoogle Scholar
  35. Mogk A, Haslberger T, Tessarz P, Bukau B (2008) Common and specific mechanisms of AAA + proteins involved in protein quality control. Biochem Soc Trans 36:120–125. doi: 10.1042/BST0360120 CrossRefPubMedGoogle Scholar
  36. Nijtmans LG et al (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451. doi: 10.1093/emboj/19.11.2444 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Nijtmans LG et al (2001) Shy1p occurs in a high molecular weight complex and is required for efficient assembly of cytochrome c oxidase in yeast. FEBS Lett 498:46–51CrossRefPubMedGoogle Scholar
  38. Nijtmans LG, Artal SM, Grivell LA, Coates PJ (2002) The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci 59:143–155CrossRefPubMedGoogle Scholar
  39. Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122:3823–3830. doi: 10.1242/jcs.037655 CrossRefPubMedGoogle Scholar
  40. Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W, Janska H (2010) Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana. J Biol Chem 285:12512–12521. doi: 10.1074/jbc.M109.063644 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Rasmusson AG, Geisler DA, Moller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60. doi: 10.1016/j.mito.2007.10.004 CrossRefPubMedGoogle Scholar
  42. Richter-Dennerlein R et al (2014) DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab 20:158–171. doi: 10.1016/j.cmet.2014.04.016 CrossRefPubMedGoogle Scholar
  43. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22. doi: 10.1038/nprot.2006.4 CrossRefPubMedGoogle Scholar
  44. Schleicher M et al (2008) Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol 180:101–112. doi: 10.1083/jcb.200706072 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Shaw J, Kirshenbaum LA (2006) HAX-1 represses postmitochondrial caspase-9 activation and cell death during hypoxia-reoxygenation. Circ Res 99:336–338. doi: 10.1161/01.RES.0000239408.03169.94 CrossRefPubMedGoogle Scholar
  46. Steglich G, Neupert W, Langer T (1999) Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol 19:3435–3442PubMedCentralPubMedGoogle Scholar
  47. Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223. doi: 10.1385/1-59745-003-0:215 PubMedGoogle Scholar
  48. Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259. doi: 10.1091/mbc.E04-09-0807 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Van Aken O et al (2007) Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. Plant J 52:850–864. doi: 10.1111/j.1365-313X.2007.03276.x CrossRefPubMedGoogle Scholar
  50. Van Aken O, Whelan J, Van Breusegem F (2010) Prohibitins: mitochondrial partners in development and stress response. Trends Plant Sci. doi: 10.1016/j.tplants.2010.02.002 PubMedGoogle Scholar
  51. Wada H, Shintani D, Ohlrogge J (1997) Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc Natl Acad Sci USA 94:1591–1596CrossRefPubMedCentralPubMedGoogle Scholar
  52. Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802. doi: 10.1074/jbc.M604501200 CrossRefPubMedGoogle Scholar
  53. Wang Y, Ries A, Wu K, Yang A, Crawford NM (2010) The Arabidopsis prohibitin gene PHB3 functions in nitric oxide-mediated responses and in hydrogen peroxide-induced nitric oxide accumulation. Plant Cell 22:249–259. doi: 10.1105/tpc.109.072066 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Zsigmond L et al (2008) Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol 146:1721–1737. doi: 10.1104/pp.107.111260 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Janusz Piechota
    • 1
  • Monika Bereza
    • 1
  • Aleksandra Sokołowska
    • 1
  • Kondrad Suszyński
    • 1
  • Karolina Lech
    • 1
  • Hanna Jańska
    • 1
  1. 1.Department of BiotechnologyUniversity of WroclawWroclawPoland

Personalised recommendations