Plant Molecular Biology

, Volume 88, Issue 1–2, pp 193–206 | Cite as

Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes

  • Neha Vaid
  • Prashant Pandey
  • Vineet Kumar Srivastava
  • Narendra Tuteja
Article

Abstract

Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na+ and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

Keywords

Crop improvement Ion homeostasis Ion compartmentalization Lectin receptor-like kinase Salinity stress tolerance 

Supplementary material

11103_2015_319_MOESM1_ESM.pdf (587 kb)
Supplementary material 1 (PDF 587 kb)

References

  1. Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33:1215–1223Google Scholar
  2. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517. doi:10.1094/mpmi-21-5-0507 CrossRefPubMedGoogle Scholar
  3. André S, Siebert H-C, Nishiguchi M, Tazaki K, Gabius H-J (2005) Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms. Biochim Biophys Acta (BBA) (General Subjects) 1725:222–232. doi:10.1016/j.bbagen.2005.04.004 CrossRefGoogle Scholar
  4. Andrés Z, Pérez-Hormaeche J, Leidi EO, Schlücking K, Steinhorst L, McLachlan DH, Schumacher K, Hetherington AM, Kudla J, Cubero B, Pardo JM (2014) Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci 111(17):E1806–E1814CrossRefPubMedCentralPubMedGoogle Scholar
  5. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254. doi:10.1016/j.febslet.2007.04.014 CrossRefPubMedGoogle Scholar
  6. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258CrossRefPubMedGoogle Scholar
  7. Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24(3):1127–1142CrossRefPubMedCentralPubMedGoogle Scholar
  8. Barre A, Hervé C, Lescure B, Rougé P (2002) Lectin receptor kinases in plants. Crit Rev Plant Sci 21:379–399. doi:10.1080/0735-260291044287 CrossRefGoogle Scholar
  9. Bassil E, Tajima H, Liang Y-C, M-a Ohto, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na +/H + antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell Online 23(9):3482–3497CrossRefGoogle Scholar
  10. Becraft PW (1998) Receptor kinases in plant development. Trends Plant Sci 3:384–388CrossRefGoogle Scholar
  11. Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced beta subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6:287–292CrossRefPubMedCentralPubMedGoogle Scholar
  12. Bonaventure G (2011) The Nicotiana attenuata LECTIN RECEPTOR KINASE 1 is involved in the perception of insect feeding. Plant Signal Behav 6:2060–2063CrossRefPubMedCentralPubMedGoogle Scholar
  13. Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396CrossRefPubMedGoogle Scholar
  14. Chen X et al (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804. doi:10.1111/j.1365-313X.2006.02739.x CrossRefPubMedGoogle Scholar
  15. Cheng H et al (2002) Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway and its connection to calcineurin function. Mol Biol Cell 13:2963–2976CrossRefPubMedCentralPubMedGoogle Scholar
  16. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236CrossRefPubMedGoogle Scholar
  17. Cho E, Yuen CL, Kang B-H, Ondzighi C, Staehelin LA, Christopher D (2011) Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol Cells 32:459–475. doi:10.1007/s10059-011-0150-3 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343:290–294CrossRefPubMedGoogle Scholar
  19. Davenport RJ, MuÑOz-Mayor A, Jha D, Essah PA, Rus ANA, Tester M (2007) The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell Environ 30:497–507. doi:10.1111/j.1365-3040.2007.01637.x CrossRefGoogle Scholar
  20. Deng K, Wang Q, Zeng J, Guo X, Zhao X, Tang D, Liu X (2009) A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response. J Plant Biol 52:493–500. doi:10.1007/s12374-009-9063-5 CrossRefGoogle Scholar
  21. Dere S, Güneş T, Sivaci R (1998) Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–17Google Scholar
  22. Desclos-Theveniau M, Arnaud D, Huang T-Y, Lin GJ-C, Chen W-Y, Lin Y-C, Zimmerli L (2012) The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 8:e1002513 doi:10.1371/journal.ppat.1002513
  23. Dong C-H, Zolman BK, Bartel B, B-h Lee, Stevenson B, Agarwal M, Zhu J-K (2009) Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. Mol Plant 2:59–72CrossRefPubMedCentralPubMedGoogle Scholar
  24. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi:10.1146/annurev.pp.28.060177.000513 CrossRefGoogle Scholar
  25. Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell Online 23:3512–3532CrossRefGoogle Scholar
  26. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255. doi:10.1080/07352689991309207 CrossRefGoogle Scholar
  27. Gouget A et al (2006) Lectin receptor kinases participate in protein–protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90CrossRefPubMedCentralPubMedGoogle Scholar
  28. Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci 90:1629–1633CrossRefPubMedCentralPubMedGoogle Scholar
  29. Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463 CrossRefPubMedGoogle Scholar
  30. He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY (2004) A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor Appl Genet 109:377–383. doi:10.1007/s00122-004-1641-9 CrossRefPubMedGoogle Scholar
  31. Hervé C, Serres J, Dabos P, Canut H, Barre A, Rougé P, Lescure B (1999) Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39:671–682. doi:10.1023/a:1006136701595 CrossRefPubMedGoogle Scholar
  32. Huang P, Ju H-W, Min J-H, Zhang X, Kim S-H, Yang K-Y, Kim CS (2013) Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 203–204:98–106. doi:10.1016/j.plantsci.2012.12.019 CrossRefPubMedGoogle Scholar
  33. Joshi A, Dang HQ, Vaid N, Tuteja N (2010) Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 27:133–150. doi:10.1007/s10719-009-9265-6 CrossRefPubMedGoogle Scholar
  34. Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228:977–987. doi:10.1007/s00425-008-0797-y CrossRefPubMedGoogle Scholar
  35. Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell Online 16:21–32CrossRefGoogle Scholar
  36. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322. doi:10.1016/j.jprot.2011.02.006 CrossRefPubMedGoogle Scholar
  37. Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124CrossRefPubMedGoogle Scholar
  38. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331. doi:10.1016/S1369-5266(02)00275-3 CrossRefPubMedGoogle Scholar
  39. Lam E, Pontier D, del Pozo O (1999) Die and let live—programmed cell death in plants. Curr Opin Plant Biol 2:502–507. doi:10.1016/S1369-5266(99)00026-6 CrossRefPubMedGoogle Scholar
  40. Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G, Lee Y (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12:547–556. doi:10.1046/j.1365-313X.1997.00547.x CrossRefGoogle Scholar
  41. Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26CrossRefPubMedCentralPubMedGoogle Scholar
  42. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018 CrossRefPubMedGoogle Scholar
  43. Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49:801–813CrossRefPubMedGoogle Scholar
  44. Maruyama D, Endo T, S-i Nishikawa (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci 107:1684–1689CrossRefPubMedCentralPubMedGoogle Scholar
  45. Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128CrossRefPubMedCentralPubMedGoogle Scholar
  46. Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669. doi:10.1111/j.1365-313X.2007.03169.x CrossRefPubMedGoogle Scholar
  47. Miyahara K, Mizunuma M, Hirata D, Tsuchiya E, Miyakawa T (1996) The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance. FEBS Lett 399:317–320. doi:10.1016/S0014-5793(96)01353-1 CrossRefPubMedGoogle Scholar
  48. Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342. doi:10.1016/S1369-5266(03)00055-4 CrossRefPubMedGoogle Scholar
  49. Msanne J, Lin J, Stone J, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107. doi:10.1007/s00425-011-1387-y CrossRefPubMedGoogle Scholar
  50. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  51. Nakashima K et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630. doi:10.1111/j.1365-313X.2007.03168.x CrossRefPubMedGoogle Scholar
  52. Navarro A, Vicente MJ, Martínez-Sánchez JJ, Franco JA, Fernández JA, Bañón S (2008) Influence of deficit irrigation and paclobutrazol on plant growth and water status in Lonicera implexa seedlings. Acta Hort (ISHS) 782:299–304Google Scholar
  53. Park M, Lee H, Lee J-S, Byun M-O, Kim B-G (2009) In planta measurements of Na+ using fluorescent dye CoroNa Green. J Plant Biol 52:298–302. doi:10.1007/s12374-009-9036-8 CrossRefGoogle Scholar
  54. Pöpping B, Gibbons T, Watson M (1996) The Pisum sativum MAP kinase homologue (PsMAPK) rescues the Saccharomyces cerevisiae hog1 deletion mutant under conditions of high osmotic stress. Plant Mol Biol 31:355–363. doi:10.1007/bf00021795 CrossRefPubMedGoogle Scholar
  55. Price ER, Jin M, Lim D, Pati S, Walsh CT, McKeon FD (1994) Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci 91:3931–3935CrossRefPubMedCentralPubMedGoogle Scholar
  56. Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514CrossRefPubMedCentralPubMedGoogle Scholar
  57. Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901CrossRefPubMedCentralPubMedGoogle Scholar
  58. Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa K-I, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51. doi:10.1016/S0014-5793(98)00483-9 CrossRefPubMedGoogle Scholar
  59. Singh P et al (2012) The lectin receptor kinase-VI.2 is required for priming and positively regulates arabidopsis pattern-triggered immunity. Plant Cell Online 24:1256–1270CrossRefGoogle Scholar
  60. Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S (2012) Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PLoS ONE 7(12):e53136. doi:10.1371/journal.pone.0053136 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Sun X-L et al (2013) GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol 170:505–515. doi:10.1016/j.jplph.2012.11.017 CrossRefPubMedGoogle Scholar
  62. Tajima H, Iwata Y, Iwano M, Takayama S, Koizumi N (2008) Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem Biophys Res Commun 374:242–247. doi:10.1016/j.bbrc.2008.07.021 CrossRefPubMedGoogle Scholar
  63. Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8:231–237CrossRefPubMedGoogle Scholar
  64. Trivedi D, Ansari M, Dutta T, Singh P, Tuteja N (2013) Molecular characterization of cyclophilin A-like protein of Piriformospora indica for its potential role to abiotic stress tolerance in E. coli. BMC Res Notes. doi:10.1186/1756-0500-6-5552014 PubMedCentralPubMedGoogle Scholar
  65. Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3:79–86CrossRefPubMedCentralPubMedGoogle Scholar
  66. Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127. doi:10.1111/tpj.12277 PubMedGoogle Scholar
  67. Tuteja N, Sahoo RK, Huda KMK, Tula S, Tuteja R (2014) OsBAT1 augments salinity stress tolerance by enhancing detoxification of ROS and expression of stress-responsive genes in transgenic rice. Plant Mol Biol Report. doi:10.1007/s11105-014-0827-9
  68. Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80:365–388. doi:10.1007/s11103-012-9952-8 CrossRefPubMedGoogle Scholar
  69. Vaid N, Macovei A, Tuteja N (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6:1405–1418CrossRefPubMedGoogle Scholar
  70. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1 CrossRefGoogle Scholar
  71. Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277:2413–2418CrossRefPubMedGoogle Scholar
  72. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefPubMedGoogle Scholar
  73. Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283:3200–3210CrossRefPubMedGoogle Scholar
  74. Willekens H et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816. doi:10.1093/emboj/16.16.4806 CrossRefPubMedCentralPubMedGoogle Scholar
  75. Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Online 14:S165–S183CrossRefGoogle Scholar
  76. Zhang Z, Zhang D, Zheng Y (2009) Transcriptional and post-transcriptional regulation of gene expression in submerged root cells of maize. Plant Signal Behav 4:132–135CrossRefPubMedCentralPubMedGoogle Scholar
  77. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Neha Vaid
    • 1
    • 2
  • Prashant Pandey
    • 1
    • 2
  • Vineet Kumar Srivastava
    • 1
  • Narendra Tuteja
    • 1
  1. 1.Plant Molecular Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany

Personalised recommendations