Advertisement

Plant Molecular Biology

, Volume 87, Issue 4–5, pp 341–353 | Cite as

A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn

  • Sandeep Kumar
  • Diaa AlAbed
  • John  T. Whitteck
  • Wei Chen
  • Sara Bennett
  • Andrew Asberry
  • Xiujuan Wang
  • Daniel DeSloover
  • Murugesan Rangasamy
  • Terry R. Wright
  • Manju Gupta
Article

Abstract

Transgene stacking in trait development process through genetic engineering is becoming complex with increased number of desired traits and multiple modes of action for each trait. We demonstrate here a novel gene stacking strategy by combining bidirectional promoter (BDP) and bicistronic approaches to drive coordinated expression of multi-genes in corn. A unidirectional promoter, Ubiquitin-1 (ZMUbi1), from Zea mays was first converted into a synthetic BDP, such that a single promoter can direct the expression of two genes from each end of the promoter. The BDP system was then combined with a bicistronic organization of genes at both ends of the promoter by using a Thosea asigna virus 2A auto-cleaving domain. With this gene stacking configuration, we have successfully obtained expression in transgenic corn of four transgenes; three transgenes conferring insect (cry34Ab1 and cry35Ab1) and herbicide (aad1) resistance, and a phiyfp reporter gene using a single ZMUbi1 bidirectional promoter. Gene expression analyses of transgenic corn plants confirmed better coordinated expression of the four genes compared to constructs driving each gene by independent unidirectional ZmUbi1 promoter. To our knowledge, this is the first report that demonstrates application of a single promoter for co-regulation of multiple genes in a crop plant. This stacking technology would be useful for engineering metabolic pathways both for basic and applied research.

Keywords

Transgene stacking Bidirectional promoter Bicistronic expression Transgenic corn 

Notes

Acknowledgments

We are grateful to Heather Robinson, Jamie Torrence, Stephen Foulk, Stephen Novak, Daren Hemingway and the greenhouse staff for their help in plant transformation, planting and seed production, and Nicole Skaggs for molecular analysis. The authors thank Susan Jayne, Michelle Smith, and Katherine Armstrong for their support, and Steve Evans, Katherine Armstrong, Tarlochan Dhadialla and Tom Meade for reading the manuscript. We also thank anonymous reviewers for their critical review of the manuscript and constructive criticism.

Supplementary material

11103_2015_281_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1714 kb)

References

  1. Ainley M et al (2004) Genetic engineering in plants; DNA sequences and constructs useful in controlling expression of recombinant genes in plants, constructs use novel regulatory sequences derived from maize root preferential cationic peroxidase gene. US Patent 6699984 B1Google Scholar
  2. An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122PubMedCentralPubMedGoogle Scholar
  3. Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998. doi: 10.1104/pp.103.020602 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Gene Dev 16:2583–2592. doi: 10.1101/gad.1026202
  5. Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123:1–12. doi: 10.1016/j.biotec.2005.10.014 CrossRefPubMedGoogle Scholar
  6. Cowen NM, Armstrong K, Smith KA (2007) Use of regulatory sequences in transgenic plants. US Patent 7179902 B2Google Scholar
  7. Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141CrossRefPubMedCentralPubMedGoogle Scholar
  8. de Felipe P, Luke GA, Brown JD, Ryan MD (2010) Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J 5:213–223. doi: 10.1002/biot.200900134 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025PubMedGoogle Scholar
  10. El Amrani A, Barakate A, Askari BM, Li XJ, Roberts AG, Ryan MD, Halpin C (2004) Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol 135:16–24. doi: 10.1104/pp.103.032649 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Ha SH, Liang YS, Jung H, Ahn MJ, Suh, SC, Kweon SJ, Kim JK (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8:928–938 doi: 10.1111/j.1467-7652.2010.00543.x
  12. Halpin C (2005) Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155. doi: 10.1111/j.1467-7652.2004.00113.x CrossRefPubMedGoogle Scholar
  13. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants Embo J 6:3901–3907Google Scholar
  14. Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740CrossRefPubMedGoogle Scholar
  15. Langridge WH, Fitzgerald KJ, Koncz C, Schell J, Szalay AA (1989) Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci USA 86:3219–3223CrossRefPubMedCentralPubMedGoogle Scholar
  16. Li H, Olson M, Lin G, Hey T, Tan SY, Narva KE (2013) Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites. PLoS One 8:e53079. doi: 10.1371/journal.pone.0053079 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. The Plant Cell Online 19:943–958. doi: 10.1105/tpc.106.045724 CrossRefGoogle Scholar
  18. Miller PD (2013) Method for improved transformation using agrobacterium. US Patent 0157369 A1Google Scholar
  19. Minskaia E, Ryan MD (2013) Protein coexpression using FMDV 2A: effect of “linker” residues. Biomed Res Int. doi: 10.1155/2013/291730 PubMedCentralPubMedGoogle Scholar
  20. Minskaia E, Nicholson J, Ryan MD (2013) Optimisation of the foot-and-mouth disease virus 2A co-expression system for biomedical applications. BMC Biotechnol 13:67. doi: 10.1186/1472-6750-13-67 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production Planta 225:365–379. doi: 10.1007/s00425-006-0366-1 Google Scholar
  22. Mueller D, Pope R (2009) Corn field guide. Iowa State University, AmesGoogle Scholar
  23. Oleson JD, Park YL, Nowatzki TM, Tollefson JJ (2005) Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol 98:1–8CrossRefPubMedGoogle Scholar
  24. Osborn MJ et al (2005) A picornaviral 2A-like sequence-based tricistronic vector allowing for high-level therapeutic gene expression coupled to a dual-reporter system. Mol Ther 12:569–574. doi: 10.1016/j.ymthe.2005.04.013 CrossRefPubMedGoogle Scholar
  25. Parry MA, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54:250–259. doi: 10.1111/j.1744-7909.2012.01109.x CrossRefPubMedGoogle Scholar
  26. Peremarti A et al (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378. doi: 10.1007/s11103-010-9628-1 CrossRefPubMedGoogle Scholar
  27. Pringle FM, Gordon KH, Hanzlik TN, Kalmakoff J, Scotti PD, Ward VK (1999) A novel capsid expression strategy for Thosea asigna virus (Tetraviridae). J Gen Virol 80(Pt 7):1855–1863PubMedGoogle Scholar
  28. Que Q et al (2010) Trait stacking in transgenic crops: challenges and opportunities GM. Crops 1:220–229. doi: 10.4161/gmcr.1.4.13439 CrossRefGoogle Scholar
  29. Sawant SV (2005) A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. J Exp Bot 56:2345–2353. doi: 10.1093/jxb/eri227 CrossRefPubMedGoogle Scholar
  30. Shagin DA et al (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850. doi: 10.1093/molbev/msh079 CrossRefPubMedGoogle Scholar
  31. Siebert MW et al (2012) Evaluation of corn hybrids expressing Cry1F, Cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. J Econ Entomol 105:1825–1834. doi: 10.1603/Ec12155 CrossRefPubMedGoogle Scholar
  32. Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3:2723–2730PubMedCentralPubMedGoogle Scholar
  33. Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124. doi: 10.1016/j.tplants.2007.01.002 CrossRefPubMedGoogle Scholar
  34. Wehrmann A, Van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14:1274–1278. doi: 10.1038/nbt1096-1274 CrossRefPubMedGoogle Scholar
  35. Wright TR et al (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci USA 107:20240–20245. doi: 10.1073/pnas.1013154107 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Xie MT, He YH, Gan SS (2001) Bidirectionalization of polar promoters in plants. Nat Biotechnol 19:677–679. doi: 10.1038/90296 CrossRefPubMedGoogle Scholar
  37. Zheng H, Lei Y, Lin S, Zhang Q, Zhang Z (2011) Bidirectionalization of a methyl jasmonate-inducible plant promoter. Biotechnol Lett 33:387–393. doi: 10.1007/s10529-010-0431-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sandeep Kumar
    • 1
  • Diaa AlAbed
    • 1
  • John  T. Whitteck
    • 1
  • Wei Chen
    • 1
  • Sara Bennett
    • 1
  • Andrew Asberry
    • 1
  • Xiujuan Wang
    • 1
  • Daniel DeSloover
    • 2
  • Murugesan Rangasamy
    • 1
  • Terry R. Wright
    • 1
  • Manju Gupta
    • 1
  1. 1.Dow AgroSciences LLCIndianapolisUSA
  2. 2.PhiladelphiaUSA

Personalised recommendations