Advertisement

Plant Molecular Biology

, Volume 87, Issue 1–2, pp 69–80 | Cite as

De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species

  • Veronika Lang
  • Björn Usadel
  • Gerhard Obermeyer
Article

Abstract

Pollen grains of Lilium longiflorum are a long-established model system for pollen germination and tube tip growth. Due to their size, protein content and almost synchronous germination in synthetic media, they provide a simple system for physiological measurements as well as sufficient material for biochemical studies like protein purifications, enzyme assays, organelle isolation or determination of metabolites during germination and pollen tube elongation. Despite recent progresses in molecular biology techniques, sequence information of expressed proteins or transcripts in lily pollen is still scarce. Using a next generation sequencing strategy (RNAseq), the lily pollen transcriptome was investigated resulting in more than 50 million high quality reads with a length of 90 base pairs. Sequenced transcripts were assembled and annotated, and finally visualized with MAPMAN software tools and compared with other RNAseq or genome data including Arabidopsis pollen, Lilium vegetative tissues and the Amborella trichopoda genome. All lily pollen sequence data are provided as open access files with suitable tools to search sequences of interest.

Keywords

Lilium longiflorum Next generation sequencing Pollen RNA-Seq Tip growth 

Notes

Acknowledgments

The project was partially financed by the Austrian Science Fund (FWF grant no. P21298), the Stiftungs- und Fördergesellschaft of the Univ. Salzburg and by the University priority program “BioScience and Health”. BU thanks the BMBF for funding through the primary database FKZ 0315961 and the state NRW–BioSC for the project PNP-Express. We thank Professors Dr. Zhongshan Gao, Dept. Horticulture, Zhejiang Univ., China, and Dr. Paul Arens, Wageningen Univ., The Netherlands, for providing data of the RNAseq study on Lilium oriental hybrid tissue and on L. longiflorum leaf tissue, respectively.

Supplementary material

11103_2014_261_MOESM1_ESM.7z (6.4 mb)
Supplementary material 1 (7Z 6,500 kb)
11103_2014_261_MOESM2_ESM.xls (51 kb)
Supplementary material 2 (XLS 51 kb)
11103_2014_261_MOESM3_ESM.xlsx (4.5 mb)
Supplementary material 3 (XLSX 4581 kb)
11103_2014_261_MOESM4_ESM.pptx (3.2 mb)
Supplementary material 4 (PPTX 3245 kb)
11103_2014_261_MOESM5_ESM.docx (29 kb)
Supplementary material 5 (DOCX 30 kb)

References

  1. Alqudah AM, Samarah NH, Mullen RE (2011) Drought stress effect on crop pollination, seed set, yield and quality. Sustain Agric Rev 6:193–213. doi: 10.1007/978-94-007-0186-1_6 Google Scholar
  2. Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342. doi:  10.1126/science.1241089
  3. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo J (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characterictics of the pollen transcriptome. Plant Physiol 133:713–725PubMedCentralPubMedCrossRefGoogle Scholar
  4. Becker JD, Takeda S, Borges F, Dolan L, Feijo JA (2014) Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biol 14:197. doi: 10.1186/s12870-014-0197-3 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Benkert R, Obermeyer G, Bentrup F-W (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8CrossRefGoogle Scholar
  6. Bibikova TN, Assmann S, Gilroy S (2004) Ca2+ and pH as integrated signals in transport control. In: Blatt MR (ed) Membrane transport in plants. Annual Plant Review, vol 15. Blackwell, Oxford, pp 252–278Google Scholar
  7. Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582PubMedCrossRefGoogle Scholar
  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cheung AY, Wu H-M (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572PubMedCrossRefGoogle Scholar
  10. Du F et al (2014) De novo assembled transcriptome analysis and SSR marker development of a mixture of six tissues from Lilium oriental hybrid ‘Sorbonne’. Plant Mol Biol Rep. doi: 10.1007/s11105-014-0746-9 Google Scholar
  11. Elias M, Cvrckova F, Obermeyer G, Zarsky V (2001) Microinjection of guanine nucleotide analogues into lily pollen tubes results in isodiametirc tip expansion. Plant Biol 3:489–492CrossRefGoogle Scholar
  12. Engel E et al (1997) Immunological and biological properties of Bet v 4, a novel birch pollen allergen with two EF-hand calcium-binding domains. J Biol Chem 272:28630–28637PubMedCrossRefGoogle Scholar
  13. Fang X, Turner NC, Yan G, Li F, Siddique KHM (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought stress. J Exp Bot 61:335–345PubMedCentralPubMedCrossRefGoogle Scholar
  14. Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187:155–167CrossRefGoogle Scholar
  15. Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro S, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86–94PubMedCrossRefGoogle Scholar
  16. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  17. Ge W, Song Y, Zhang C, Zhang Y, Burlingame AL, Guo Y (2011) Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. Biochim Biophys Acta 1814:1964–1973PubMedCentralPubMedCrossRefGoogle Scholar
  18. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652PubMedCentralPubMedCrossRefGoogle Scholar
  19. Grobei MA et al (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800PubMedCentralPubMedCrossRefGoogle Scholar
  20. Haerizadeh F, Wong CE, Bhalla PL, Gresshoff PM, Singh BP (2009) Genomic expression profiling of mature sybean (Glycine max) pollen. BMC Plant Biol 9:25PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hafidh S, Breznenova K, Ruzicka P, Fecikova J, Capkova V, Honys D (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24. doi: 10.1186/1471-2229-12-24 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hamilton DA, Roy M, Rueda J, Sindhu RK, Sanford J, Mascarenhas JP (1992) Dissection of a pollen-specific promoter from maize by transient transformation assay. Plant Mol Biol 18:211–218PubMedCrossRefGoogle Scholar
  23. Han B, Chen S, Dai S, Yang N, Wang T (2010) Isobaric tags for relative and absolute quantification-based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. J Integr Plant Biol 52:1043–1058PubMedCrossRefGoogle Scholar
  24. Hartmann S, Vision TJ (2008) Using ESTs for phylogenomics: can one accurately infer a phylogenetic tree from a gappy alignment? BMC Evol Biol 26. doi: 10.1186/1471-2148-8-95
  25. Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010PubMedCentralPubMedCrossRefGoogle Scholar
  26. Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG, Hepler PK (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot 54:65–72PubMedCrossRefGoogle Scholar
  27. Holmes-Davies R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884CrossRefGoogle Scholar
  28. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652PubMedCentralPubMedCrossRefGoogle Scholar
  29. Huang J et al (2006) An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in lily. Plant Physiol 140:1374–1383PubMedCentralPubMedCrossRefGoogle Scholar
  30. Huang J-C, Chang L-C, Wang M-L, Guo C-L, Chung M-C, Jauh G-Y (2011) Identification and exploration of pollen tube small proteins encoded by pollination-induced transcripts. Plant Cell Physiol 52:1546–1559PubMedCrossRefGoogle Scholar
  31. Konrad K, Wudick MM, Feijo JA (2011) Calcium regulation of tip growth: new genes for old mechanisms. Curr Opin Plant Biol 14:721–730PubMedCrossRefGoogle Scholar
  32. Lamesch P et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210. doi: 10.1093/nar/gkr1090 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G (2014) Pump up the volume—a central role for the plasma membrane H+ pump in pollen germination and tube growth. Protoplasma 251:477–488PubMedCrossRefGoogle Scholar
  34. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi: 10.1186/gb-2009-10-3-r25 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-seq-based transcriptomics. Nucleic Acids Res 40:W622–W627PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lohse M et al (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell Environ 37:1250–1258CrossRefGoogle Scholar
  37. Loraine AE, McCormick S, Estrada A, Patel K, Qin P (2013) RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162:1092–1109PubMedCentralPubMedCrossRefGoogle Scholar
  38. Messerli M, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509PubMedGoogle Scholar
  39. Michalski A et al (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics 10. doi:  10.1074/mcp.M111.011015-1
  40. Michard E, Dias P, Feijo JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181CrossRefGoogle Scholar
  41. Michard E, Alves F, Feijo JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622PubMedCrossRefGoogle Scholar
  42. Miki-Hiroshige H, Yamanaka Y, Nakamura S, Kurata S, Hirano H (2004) Changes of protein profiles during pollen development in Lilium longiflorum. Sex Plant Reprod 16:209–214CrossRefGoogle Scholar
  43. Mouline K et al (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350PubMedCentralPubMedCrossRefGoogle Scholar
  44. Moutinho A, Camacho L, Haley A, Salomé-Pais M, Trewavas A, Malhó R (2001a) Antisense pertubation of protein function in living pollen tubes. Sex Plant Reprod 14:101–104CrossRefGoogle Scholar
  45. Moutinho A, Hussey PJ, Trewavas A, Malho R (2001b) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481–10486PubMedCentralPubMedCrossRefGoogle Scholar
  46. Nobiling R, Reiss H-D (1987) Quatitative analysis of calcium gradients and activity in growing pollen tubes of Lilium longiflorum. Protoplasma 139:20–24CrossRefGoogle Scholar
  47. Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266PubMedCrossRefGoogle Scholar
  48. Obermeyer G, Kolb H-A (1993) K+ channels in the plasma membrane of lily pollen protoplasts. Bot Acta 106:26–31CrossRefGoogle Scholar
  49. Obermeyer G, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56:319–327PubMedGoogle Scholar
  50. Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833PubMedCentralPubMedCrossRefGoogle Scholar
  51. Okada T, Bhalla PL, Singh MB (2006) Expressed sequence tag analysis of Lilium longiflorum generative cells. Plant Cell Physiol 47:698–705PubMedCrossRefGoogle Scholar
  52. Okada T, Singh MB, Bhalla PL (2007) Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Rep 26:1045–1052PubMedCrossRefGoogle Scholar
  53. Okuda S et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361PubMedCrossRefGoogle Scholar
  54. Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152PubMedCrossRefGoogle Scholar
  55. Pertl H, Rittmann S, Schulze WX, Obermeyer G (2011) Identification of lily pollen 14-3-3 isoforms and their subcellular and time-dependent expression profile. Biol Chem 392:249–262PubMedCrossRefGoogle Scholar
  56. Pertl-Obermeyer H, Obermeyer G (2014) Pollen cultivation and preparation for proteomic studies. In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Winkoop S (eds) Plant proteomics: methods and protocols. Methods in molecular biology, vol 1072. Springer, New York, pp 435–449CrossRefGoogle Scholar
  57. Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, divison control and gene expression regulation. Plant Physiol 138:744–756PubMedCentralPubMedCrossRefGoogle Scholar
  58. Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxigen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751PubMedCrossRefGoogle Scholar
  59. Qin Y et al (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genetics 5. doi: 10.1371/journal.pgen.1000621
  60. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140PubMedCentralPubMedCrossRefGoogle Scholar
  61. Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT (2013) A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol 197:668–679PubMedCrossRefGoogle Scholar
  62. Rosen WG, Gawlik SR, Dashek WV, Siegesmund KA (1964) Fine structure and cytochemistry of Lilium pollen tubes. Am J Bot 51:61–71CrossRefGoogle Scholar
  63. Sangha JS, Gu K, Kaur J, Yin Z (2010) An improved method for RNAisolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC Res Notes 3:126. doi: 10.1186/1756-0500-3-126 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Shahin A, van Kaauwen M, Esselink D, Bargsten JW, van Tuyl JM, Visser RGF, Arens P (2012) Generation and analysis of expressed sequence tags in the extreme large genomes of Lilium and Tulipa. BMC Genomics 13:640. doi: 10.1186/1471-2164-13-640 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Soto G, Alleva K, Mazella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082PubMedCrossRefGoogle Scholar
  66. Steinhorst L, Kudla J (2013) Calcium—a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581PubMedCrossRefGoogle Scholar
  67. Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for nonmodel plant species. Am J Bot 99:1–10CrossRefGoogle Scholar
  68. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  69. Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  70. Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309PubMedCrossRefGoogle Scholar
  71. Usadel B et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204PubMedCentralPubMedCrossRefGoogle Scholar
  72. Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eisenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, maize. Plant, Cell Environ 32:1211–1229CrossRefGoogle Scholar
  73. vander Woude WJ, Morre DJ, Bracker CE (1971) Isolation and characterisation of secretory vesicels in germinated pollen of Lilium longiflorum. J Cell Sci 8:331–351Google Scholar
  74. Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6:419–426PubMedCrossRefGoogle Scholar
  75. Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211PubMedCentralPubMedCrossRefGoogle Scholar
  76. Ward JA, Ponnala L, Weber CA (2012) Strategies for transcriptome analysis in nonmodel plants. Am J Bot 99:267–276PubMedCrossRefGoogle Scholar
  77. Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genom 11:338CrossRefGoogle Scholar
  78. Weisenseel MH, Nuccitelli R, Jaffe LA (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567PubMedCrossRefGoogle Scholar
  79. Wu J, Wang S, Gu Y, Zhang S, Publicover SJ, Franklin-Tong VE (2011) Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. Plant Physiol 155:963–973PubMedCentralPubMedCrossRefGoogle Scholar
  80. Yokota E, Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177:153–162CrossRefGoogle Scholar
  81. Yokota E, Takahara K, Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol 116:1421–1429PubMedCentralPubMedCrossRefGoogle Scholar
  82. Zhou J, Song L-F, Zhang W, Wang Y, Ruan S, Wu W-H (2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51:438–455CrossRefGoogle Scholar
  83. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Veronika Lang
    • 1
  • Björn Usadel
    • 2
    • 3
  • Gerhard Obermeyer
    • 1
  1. 1.Molecular Plant Biophysics and Biochemistry, Depatment of Molecular BiologyUniversity of SalzburgSalzburgAustria
  2. 2.Institute of Biology I (Botany)RWTH AachenAachenGermany
  3. 3.IBG-2 PflanzenwissenschaftenForschungszentrum JülichJülichGermany

Personalised recommendations