Advertisement

Plant Molecular Biology

, Volume 86, Issue 1–2, pp 51–67 | Cite as

Characterization of five subgroups of the sieve element occlusion gene family in Glycine max reveals genes encoding non-forisome P-proteins, forisomes and forisome tails

  • Sascia Zielonka
  • Antonia M. Ernst
  • Susan Hawat
  • Richard M. Twyman
  • Dirk Prüfer
  • Gundula A. Noll
Article

Abstract

P-proteins are structural phloem proteins discussed to be involved in the rapid sealing of injured sieve elements. P-proteins are found in all dicotyledonous and some monocotyledonous plants, but additional crystalloid P-proteins, known as forisomes, have evolved solely in the Fabaceae. Both types are encoded by members of the sieve element occlusion (SEO) gene family, which comprises seven phylogenetic subgroups. The Fabaceae-specific subgroup 1 contains genes encoding forisome subunits in e.g. Medicago truncatula, Vicia faba, Dipteryx panamensis and Canavalia gladiata whereas basal subgroup 5 encodes P-proteins in Nicotiana tabacum (tobacco) and Arabidopsis thaliana. The function of remaining subgroups is still unknown. We chose Glycine max (soybean) as a model to investigate SEO proteins representing different subgroups in one species. We isolated native P-proteins to determine the SEO protein composition and analyzed the expression pattern, localization and structure of the G. max SEO proteins representing five of the subgroups. We found that subgroup 1 GmSEO genes encode forisome subunits, a member of subgroup 5 encodes a non-forisome P-protein and subgroup 2 GmSEO genes encode the components of forisome tails, which are present in a restricted selection of Fabaceaen species. We therefore present the first molecular characterization of a Fabaceae non-forisome P-protein and the first evidence that forisome tails are encoded by a phylogenetically-distinct branch of the SEO gene family.

Keywords

Glycine max Sieve element occlusion gene family Forisome tails P-proteins SEO proteins 

Notes

Acknowledgments

The technical assistance of Raphael Soeur, Christiane Fischer, Claudia Hansen and Heike Hinte (Fraunhofer Institute for Molecular Biology and Applied Ecology, IME) is gratefully acknowledged. We also thank Sascha Ahrens for plant cultivation (Institute of Plant Biology and Biotechnology, University of Münster) and Lena Harig and Boje Müller (Fraunhofer Institute for Molecular Biology and Applied Ecology, IME) for critical reading of the manuscript. This work was funded by Fraunhofer internal grants.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2014_211_MOESM1_ESM.pdf (164 kb)
Supplementary material 1 (PDF 164 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  2. Anderson R, Cronshaw J (1970) Sieve-plate pores in tobacco and bean. Planta 91:173–180PubMedGoogle Scholar
  3. Anstead JA, Froelich DR, Knoblauch M, Thompson GA (2012) Arabidopsis P-protein filament formation requires both AtSEOR1 and AtSEOR2. Plant Cell Physiol 53:1033–1042PubMedGoogle Scholar
  4. Bald T, Barth J, Niehues A, Specht M, Hippler M, Fufezan C (2012) pymzML–Python module for high-throughput bioinformatics on mass spectrometry data. Bioinformatics 28:1052–1053PubMedGoogle Scholar
  5. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedCentralPubMedGoogle Scholar
  6. Bucsenez M, Rüping B, Behrens S, Twyman RM, Noll G, Prüfer D (2012) Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula. Plant Biol 14:714–724Google Scholar
  7. Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457PubMedGoogle Scholar
  8. Craig R, Beavis R (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467PubMedGoogle Scholar
  9. Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32:465–484Google Scholar
  10. Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34:801–815PubMedCentralPubMedGoogle Scholar
  11. Cronshaw J, Esau K (1968a) P protein in the phloem of Cucurbita. I. The development of P protein bodies. J Cell Biol 38:25–39PubMedCentralPubMedGoogle Scholar
  12. Cronshaw J, Esau K (1968b) P protein in the phloem of Cucurbita. II. The P protein of mature sieve elements. J Cell Biol 38:292–303PubMedCentralPubMedGoogle Scholar
  13. Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319PubMedGoogle Scholar
  14. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  15. Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedGoogle Scholar
  16. Ehlers K, Knoblauch M, van Bel AJE (2000) Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214:80–92Google Scholar
  17. Ernst AM, Rüping B, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2011) The sieve element occlusion gene family in dicotyledonous plants. Plant Signal Behav 6:151–153PubMedCentralPubMedGoogle Scholar
  18. Ernst AM, Jekat SB, Zielonka S, Müller B, Neumann U, Rüping B, Twyman RM, Krzyzanek V, Prüfer D, Noll GA (2012) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc Natl Acad Sci USA 109:E1980–E1989. doi: 10.1073/pnas.1202999109 PubMedCentralPubMedGoogle Scholar
  19. Esau K (1969) The Phloem. Borntraeger, StuttgartGoogle Scholar
  20. Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology 33:26–35PubMedGoogle Scholar
  21. Evert R, Eschrich W, Eichhorn SE (1972) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109:193–210PubMedGoogle Scholar
  22. Fisher DB (1975) Structure of functional soybean sieve elements. Plant Physiol 56:555–569PubMedCentralPubMedGoogle Scholar
  23. Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, Pélissier HC, Knoblauch M (2011) Phloem ultrastructure and pressure flow: sieve-Element-Occlusion-Related agglomerations do not affect translocation. Plant Cell 23:4428–4445PubMedCentralPubMedGoogle Scholar
  24. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964PubMedGoogle Scholar
  25. Groscurth S, Müller B, Schwan S, Menzel M, Diekstall F, Senft M, Kendall A, Kommor BA, Neumann U, Kalischuk M, Kawchuk LM, Krzyzanek V, Heilmann A, Stubbs G, Twyman RM, Prüfer D, Noll GA (2012) Artificial forisomes are ideal models of forisome assembly and activity that allow the development of technical devices. Biomacromolecules 13:3076–3086PubMedGoogle Scholar
  26. Höhner R, Barth J, Magneschi L, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M (2013) The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics 12:2774–2790PubMedGoogle Scholar
  27. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108PubMedGoogle Scholar
  28. Jaeger MS, Uhlig K, Clausen-Schaumann H, Duschl C (2008) The structure and functionality of contractile forisome protein aggregates. Biomaterials 29:247–256PubMedGoogle Scholar
  29. Jekat SB, Ernst AM, von Bohl A, Zielonka S, Twyman RM, Noll GA, Prüfer D (2013) P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing. Front Plant Sci 4:225. doi: 10.3389/fpls.2013.00225 PubMedCentralPubMedGoogle Scholar
  30. Jorgensen R, Atkinson R, Forster R, Lucas W (1998) An RNA-based information superhighway in plants. Science 279:1486–1487PubMedGoogle Scholar
  31. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108Google Scholar
  32. Kehr JB, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92PubMedGoogle Scholar
  33. Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50PubMedCentralGoogle Scholar
  34. Knoblauch M, Peters W, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 1:1221–1230Google Scholar
  35. Knoblauch M, Noll G, Müller T, Prüfer D, Schneider-Huther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603PubMedGoogle Scholar
  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  37. Lawton DM (1978a) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot 42:353–361Google Scholar
  38. Lawton DM (1978b) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11Google Scholar
  39. Mrazek A (1910) Über geformte eiweißartige Inhaltskörper bei den Leguminosen. Österreichische Botanische Zeitschrift 60:218–230Google Scholar
  40. Müller B, Noll GA, Ernst AM, Rüping B, Groscurth S, Twyman RM, Kawchuk LM, Prüfer D (2010) Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices. Appl Microbiol Biotechnol 88:689–698PubMedGoogle Scholar
  41. Müller B, Groscurth S, Menzel M, Rüping BA, Twyman RM, Prüfer D, Noll GA (2014) Molecular and ultrastructural analysis of forisome subunits reveals the principles of forisome assembly. Ann Bot 113:1121–1137PubMedGoogle Scholar
  42. Noll GA (2005) Molekularbiologische Charakterisierung der Forisome. Dissertation, Justus-Liebig-Universität GießenGoogle Scholar
  43. Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJ, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294PubMedGoogle Scholar
  44. Noll GA, Rüping B, Ernst AM, Bucsenez M, Twyman RM, Fischer R, Prüfer D (2009) The promoters of forisome genes MtSEO2 and MtSEO3 direct gene expression to immature sieve elements in Medicago truncatula and Nicotiana tabacum. Plant Mol Biol Rep 27:526–533Google Scholar
  45. Noll GA, Müller B, Ernst AM, Rüping B, Groscurth S, Twyman RM, Kawchuk LM, Prüfer D (2011a) Characteristics of artificial forisomes from plants and yeast. Bioeng Bugs 2:111–114PubMedGoogle Scholar
  46. Noll GA, Müller B, Ernst AM, Rüping B, Twyman RM, Prüfer D (2011b) Native and artificial forisomes: functions and applications. Appl Microbiol Biotechnol 89:1675–1682PubMedGoogle Scholar
  47. Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426Google Scholar
  48. Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of Sieve Element Occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710PubMedCentralPubMedGoogle Scholar
  49. Peters WS, Knoblauch M, Warmann SA, Schnetter R, Shen AQ, Pickard WF (2007) Tailed forisomes of Canavalia gladiata: a new model to study Ca2+-driven protein contractility. Ann Bot 100:101–109PubMedCentralPubMedGoogle Scholar
  50. Peters WS, Knoblauch M, Warmann SA, Pickard WF, Shen AQ (2008) Anisotropic contraction in forisomes: simple models won’t fit. Cell Motil Cytoskeleton 65:368–378PubMedGoogle Scholar
  51. Peters WS, Haffer D, Hanakam CB, van Bel AJE, Knoblauch M (2010) Legume phylogeny and the evolution of a unique contractile apparatus that regulates phloem transport. Am J Bot 97:797–808PubMedGoogle Scholar
  52. Rüping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2010) Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol 10:219. doi: 10.1186/1471-2229-10-219 PubMedCentralPubMedGoogle Scholar
  53. Schwan S, Fritzsche M, Cismak A, Heilmann A, Spohn U (2007) In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). Biophys Chem 125:444–542PubMedGoogle Scholar
  54. Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements on P-protein aggregates (forisomes) from Vicia faba plants. Biophys Chem 139:99–105PubMedGoogle Scholar
  55. Sjolund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146PubMedCentralPubMedGoogle Scholar
  56. Specht M, Kuhlgert S, Fufezan C, Hippler M (2011) Proteomics to go: proteomatic enables the user-friendly creation of versatile MS/MS data evaluation workflows. Bioinformatics 27:1183–1184PubMedGoogle Scholar
  57. Steer MW, Newcomb EH (1969) Development and dispersal of P-protein in the phloem of Coleus blumei Benth. J Cell Sci 4:155–169PubMedGoogle Scholar
  58. Turnbull CGN, Lopez-Cobollo RM (2013) Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol 198:33–51PubMedGoogle Scholar
  59. van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688PubMedGoogle Scholar
  60. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of Tomato bushy stunt virus. Plant J 33:949–956PubMedGoogle Scholar
  61. Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388Google Scholar
  62. Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737PubMedGoogle Scholar
  63. Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305PubMedGoogle Scholar
  64. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298Google Scholar
  65. Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sascia Zielonka
    • 1
  • Antonia M. Ernst
    • 1
  • Susan Hawat
    • 2
  • Richard M. Twyman
    • 3
  • Dirk Prüfer
    • 1
    • 2
  • Gundula A. Noll
    • 2
  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology IMEMünsterGermany
  2. 2.Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
  3. 3.TRM LtdYorkUK

Personalised recommendations