Advertisement

Plant Molecular Biology

, Volume 85, Issue 6, pp 589–599 | Cite as

Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis

  • Won-Chan Kim
  • Joo-Yeol Kim
  • Jae-Heung Ko
  • Hunseung Kang
  • Kyung-Hwan Han
Article

Abstract

Secondary wall formation requires coordinated transcriptional regulation of the genes involved in the biosynthesis of the components of secondary wall. Transcription factor (TF) MYB46 (At5g12870) has been shown to function as a central regulator for secondary wall formation in Arabidopsis thaliana, activating biosynthetic genes as well as the TFs involved in the pathways. Recently, we reported that MYB46 directly regulates secondary wall-associated cellulose synthase (CESA4, CESA7, and CESA8) and a mannan synthase (CSLA9) genes. However, it is not known whether MYB46 directly activates the biosynthetic genes for hemicellulose and lignin, which are the other two major components of secondary wall. Based on the observations that the promoter regions of many of the secondary wall biosynthetic genes contain MYB46-binding cis-regulatory motif(s), we hypothesized that MYB46 directly regulates the genes involved in the biosynthesis of the secondary wall components. In this report, we describe several lines of experimental evidence in support of the hypothesis. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis showed that MYB46 directly binds to the promoters of 13 genes involved in lignin and xylan biosynthesis. We then used steroid receptor-based inducible activation system to confirm that MYB46 directly activates the transcription of the xylan and lignin biosynthetic genes. Furthermore, ectopic up-regulation of MYB46 resulted in a significant increase in xylose and a small increase in lignin content based on acetyl bromide soluble lignin measurements in Arabidopsis. Taken together, we conclude that MYB46 function as a central and direct regulator of the genes involved in the biosynthesis of all three major secondary wall components.

Keywords

Arabidopsis Hemicellulose Lignin MYB46 Secondary wall Transcription factor Xylan 

Notes

Acknowledgments

This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DR-FC02-07ER64494), in part a Grant to J-H Ko by Basic Science Research Program through the National Research Foundation of Korea (NRF) (2011-0008840) and a Grant to J-H Ko from the Korea Forest Service (S111213L080110), and a Grant to HS Kang by Mid-Career Researcher Program through the National Research Foundation of Korea (2011-0017357).

Supplementary material

11103_2014_205_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (DOC 2581 kb)
11103_2014_205_MOESM2_ESM.xls (39 kb)
Supplementary material 2 (XLS 39 kb)

References

  1. Albersheim P, Nevins DJ, English PD, Karr A (1967) A method for the analysis of sugars in plant cell wall polysaccharides by gas–liquid chromatography. Carbohydr Res 5:340–345CrossRefGoogle Scholar
  2. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11(3):605–612. doi: 10.1046/j.1365-313X.1997.11030605.x PubMedCrossRefGoogle Scholar
  3. Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38(4):305–350. doi: 10.1080/10409230390242443 PubMedCrossRefGoogle Scholar
  4. Boerjan WW, Ralph JJ, Baucher MM (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938 CrossRefGoogle Scholar
  5. Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746. doi: 10.1111/j.1365-313X.2008.03729.x PubMedCrossRefGoogle Scholar
  6. Chang XF, Chandra R, Berleth T, Beatson RP (2008) Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem 56:6825–6834. doi: 10.1021/jf800775f PubMedCrossRefGoogle Scholar
  7. Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304. doi: 10.1016/j.pbi.2010.03.002 PubMedCrossRefGoogle Scholar
  8. Foster CE, Martin TM, Pauly M (2010a) Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin. J Vis Exp 37. doi: 10.3791/1745
  9. Foster CE, Martin TM, Pauly M (2010b) Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part II: carbohydrares. J Vis Exp 37. doi: 10.3791/1837
  10. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567. doi: 10.1111/j.1365-313X.2005.02480.x PubMedCrossRefGoogle Scholar
  11. Keppler B, Showalter AM (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Mol Plant 3:834–841. doi: 10.1093/mp/ssq028 PubMedCrossRefGoogle Scholar
  12. Kim WC, Ko JH, Han KH (2012) Identification of a cis-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. Plant Mol Biol 78:489–501. doi: 10.1007/s11103-012-9880-7 PubMedCrossRefGoogle Scholar
  13. Kim WC, Ko JH, Kim JY, Kim JM, Bae HJ, Han KH (2013a) MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J 73:26–36. doi: 10.1111/j.1365-313x.2012.05124.x Google Scholar
  14. Kim WC, Kim JY, Ko JH, Kim JM, Han KH (2013b) Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in Arabidopsis thaliana. J Plant Physiol. doi: 10.1016/j.jplph.2013.04.012
  15. Kim WC, Reca I-B, Kim YS, Park S, Thomashaw MF, Keegstra K, Han K-H (2014) Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana. Plant Mol Biol 84:577–587. doi: 10.1007/s11103-013-0154-9 PubMedCrossRefGoogle Scholar
  16. Ko JH, Beers EP, Han KH (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Genet Genomics 276:517–531. doi: 10.1007/s00438-006-0157-1 PubMedCrossRefGoogle Scholar
  17. Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50:1035–1048. doi: 10.1111/j.1365-313X.2007.03109.x PubMedCrossRefGoogle Scholar
  18. Ko JH, Kim WC, Han KH (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J 60(4):649–665. doi: 10.1111/j.1365-313X.2009.03989.x PubMedCrossRefGoogle Scholar
  19. Ko J-H, Kim H-T, Han K-H (2011) Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing. Plant Biotech Rep 1–7. doi: 10.1007/s11816-010-0159-7
  20. Ko JH, Kim WC, Kim JY, Ahn SJ, Han KH (2012) MYB46-mediated transcriptional regulation of secondary wall biosynthesis. Mol Plant 5(5):961–963. doi: 10.1093/mp/sss076 PubMedCrossRefGoogle Scholar
  21. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860. doi: 10.1101/gad.1331305 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lee C, Teng Q, Zhong R, Ye ZH (2011) Molecular dissection of xylan biosynthesis during wood formation in poplar. Mol Plant 4:730–747. doi: 10.1093/mp/ssr035 PubMedCrossRefGoogle Scholar
  23. McCarthy RL, Zhong R, Ye ZH (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol 50(11):1950–1964. doi: 10.1093/pcp/pcp139 PubMedCrossRefGoogle Scholar
  24. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence. Plant Cell 17:2993–3006. doi: 10.1105/tpc.105.036004 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280. doi: 10.1105/tpc.106.047043 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561. doi: 10.1104/pp.110.161281 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ohman D, Demedts B, Kumar M, Gerber L, Gorzsás A, Goeminne G, Hedenström M, Ellis B, Boerjan W, Sundberg B (2012) MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. Plant J 73:63–76. doi: 10.1111/tpj.12018 CrossRefGoogle Scholar
  28. Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003a) Characterization of a pine MYB that regulates lignification. Plant J 36:743–754. doi: 10.1046/j.1365-313X.2003.01916.x PubMedCrossRefGoogle Scholar
  29. Patzlaff A, Newman LJ, Dubos C, Whetten RW, Smith C, McInnis S, Bevan MW, Sederoff RR, Campbell MM (2003b) Characterization of PtMYB1, an R2R3-MYB from pine xylem. Plant Mol Biol 53:597–608. doi: 10.1023/B:PLAN.0000019066.07933.d6 PubMedCrossRefGoogle Scholar
  30. Pena MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z-H (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563. doi: 10.1105/tpc.106.049320 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071. doi: 10.1104/pp.103.026484 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475. doi: 10.1104/pp.010820 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528. doi: 10.1046/j.1365-313X.2003.01745.x PubMedCrossRefGoogle Scholar
  34. Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341(6150):1103–1106. doi: 10.1126/science.1241602 PubMedCrossRefGoogle Scholar
  35. Wang HZ, Dixon RA (2012) On–off switches for secondary cell wall biosynthesis. Mol Plant 5:297–303. doi: 10.1093/mp/ssr098 PubMedCrossRefGoogle Scholar
  36. Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220. doi: 10.3389/fpls.2013.00220 PubMedCentralPubMedGoogle Scholar
  37. Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664. doi: 10.1111/j.1365-313X.2008.03533.x PubMedCrossRefGoogle Scholar
  38. Yang C, Xu Z, Song J, Conner K, Vizcay-Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534–548. doi: 10.1105/tpc.106.046391 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Yoshida K, Sakamoto S, Kawai T, Kobayashi Y, Sato K, Ichinose Y, Yaoi K, Akiyoshi-Endo M, Sato H, Takamizo T, Ohme-Takaki M, Mitsuda N (2013) Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Front Plant Sci. doi: 10.3389/fpls.2013.00383 Google Scholar
  40. Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233. doi: 10.1016/j.tplants.2010.12.005 PubMedCrossRefGoogle Scholar
  41. Zhao Q, Wang H, Yin Y, Xu Y, Chen F, Dixon RA (2010) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. PNAS 107:14496–14501. doi: 10.1073/pnas.1009170107 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zhong R, Ye ZH (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53(2):368–380. doi: 10.1093/pcp/pcr185 PubMedCrossRefGoogle Scholar
  43. Zhong R, Pena MJ, Zhou GK, Nairn CJ, Wood-Jones A, Richardson EA, Morrison WH 3rd, Darvill AG, York WS, Ye ZH (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390–3408. doi: 10.1105/tpc.105.035501 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Zhong R, Demura T, Ye Z-H (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170. doi: 10.1105/tpc.106.047399 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19(9):2776–2792. doi: 10.1105/tpc.107.053678 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782. doi: 10.1105/tpc.108.061325 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266. doi: 10.1105/tpc.108.063321 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Zhu X, Pattathil S, Mazumder K, Brehm A, Hahn MG, Dinesh-Kumar SP, Joshi CP (2010) Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation. Mol Plant 3:818–833. doi: 10.1093/mp/ssq023 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Won-Chan Kim
    • 1
    • 2
  • Joo-Yeol Kim
    • 1
    • 2
  • Jae-Heung Ko
    • 3
  • Hunseung Kang
    • 4
  • Kyung-Hwan Han
    • 1
    • 2
  1. 1.Department of Horticulture and Department of ForestryMichigan State UniversityEast LansingUSA
  2. 2.DOE-Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingUSA
  3. 3.Department of Plant and Environmental New ResourcesKyung Hee UniversityGiheung-gu, YonginKorea
  4. 4.Department of Plant BiotechnologyChonnam National UniversityGwangjuKorea

Personalised recommendations