Plant Molecular Biology

, Volume 84, Issue 6, pp 737–742 | Cite as

Duckweed in bloom: the 2nd International Conference on Duckweed Research and Applications heralds the return of a plant model for plant biology

  • Eric Lam
  • Klaus J. Appenroth
  • Todd Michael
  • Kazuhiro Mori
  • Tamra Fakhoorian
Meeting Report

Abstract

More than 50 participants from around the world congregated at Rutgers University for 4 days to discuss the latest advances in duckweed research and applications. Among other developments in the field, exciting new information related to duckweed including genome sequencing, improved genetic transformation, and the identification of a novel plant growth promoting substance from bacteria were reported.

Keywords

Duckweed Lemnaceae Wastewater remediation Biomass production Aquatic agronomy Plant genomics Microbiome Plant growth stimulating bacteria 

Supplementary material

11103_2013_162_MOESM1_ESM.pdf (251 kb)
Supplementary material 1 (PDF 250 kb)

References

  1. Anderson KE, Lowman Z, Stomp AM, Chang J (2011) Duckweed as feed ingredient in laying hen diets and its effect on egg production and composition. Int J Poult Sci 10:4–7CrossRefGoogle Scholar
  2. Cross JW (2013) The charms of duckweed. http://www.mobot.org/jwcross/duckweed.htm
  3. Datko AH, Mudd HS, Giovanelli J, Macnicol PK (1978) Sulfur-containing compounds in Lemna perpusilla 6746 grown at a range of sulfate concentrations. Plant Physiol 62:629–635PubMedCentralPubMedCrossRefGoogle Scholar
  4. Hillman WS (1963) Photoperiodism: an effect of darkness during the light period on critical night length. Science 140:1397–1398PubMedCrossRefGoogle Scholar
  5. Hillman WS (1976) Calibrating duckweeds: light, clocks, metabolism, flowering. Science 193:453–458PubMedCrossRefGoogle Scholar
  6. Kandeler R (1955) Ueber die Bluetenbildung bei Lemna gibba L. I. Kulturbedingungen und Tageslangenabhaengigkeit. Zeitschrift fuer Botanik 43:61–71Google Scholar
  7. Kuehdorf K, Jetschke G, Ballani L, Appenroth KJ (2013) The clonal dependence of turion formation in the duckweed Spirodela polyrhiza—an ecogeographical approach. Physiol. Plantarum doi:10.1111/ppl.12065
  8. Rapparini F, Tam YY, Cohen JD, Slovin JP (1999) Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul 27:139–144CrossRefGoogle Scholar
  9. Tobin EM (1981) White light effects on the mRNA for the light-harvesting chlorophyll a/b-protein in Lemna gibba L. G3. Plant Physiol 67:1078–1083PubMedCentralPubMedCrossRefGoogle Scholar
  10. Wang W, Kerstetter R, Michael TP (2011) Evolution of genome size in duckweeds (Lemnaceae). J Bot, Article ID 570319, 9 pages doi:10.1155/2011/570319
  11. Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44:6470–6474PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eric Lam
    • 1
  • Klaus J. Appenroth
    • 2
  • Todd Michael
    • 3
  • Kazuhiro Mori
    • 4
  • Tamra Fakhoorian
    • 5
  1. 1.Department of Plant Biology and PathologyRutgers, the State University of New JerseyNew BrunswickUSA
  2. 2.University of JenaJenaGermany
  3. 3.Ibis BiosciencesCarlsbadUSA
  4. 4.University of YamanashiYamanashiJapan
  5. 5.International Lemna AssociationMayfieldUSA

Personalised recommendations