Advertisement

Plant Molecular Biology

, Volume 84, Issue 4–5, pp 479–495 | Cite as

Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum

  • Maricel Podio
  • Silvina Andrea Felitti
  • Lorena Adelina Siena
  • Luciana Delgado
  • Micaela Mancini
  • José Guillermo Seijo
  • Ana María González
  • Silvina Claudia Pessino
  • Juan Pablo A. Ortiz
Article

Abstract

The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue.

Keywords

Paspalum notatum Apomixis Apospory SERK qRT-PCR In situ hybridization 

Notes

Acknowledgments

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, Project PICT 2007-00476 and PICT 2011-1269, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, Project PIP No 11220090100613 and Universidad Nacional de Rosario, Project AGR189. M. Podio and L.A. Siena received fellowships from CONICET. S.A. Felitti, L. Delgado, G. Seijo, A.M. González, S. Pessino and J.P.A. Ortiz are research staff members of CONICET.

Supplementary material

11103_2013_146_MOESM1_ESM.pdf (18 kb)
Supplementary material 1 (PDF 18 kb)
11103_2013_146_MOESM2_ESM.pdf (220 kb)
Supplementary material 2 (PDF 220 kb)

References

  1. Albertini E, Marconi G, Reale L, Barcaccia G, Proceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidates genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199PubMedCentralPubMedCrossRefGoogle Scholar
  2. Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES 1 and 2 control male sporogenesis. Plant Cell 17:3337–3349PubMedCentralPubMedCrossRefGoogle Scholar
  3. Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries SC (2008) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and- independent signalling pathways. Plant Physiol 148:611–619PubMedCentralPubMedCrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  5. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baudino S, Hansen S, Brettschneider R, Hecht VRG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the serk gene family. Planta 213:1–10PubMedCrossRefGoogle Scholar
  7. Burton GW (1946) Bahiagrass types. J Am Soc Agron 38:273–281CrossRefGoogle Scholar
  8. Burton GW (1948) The method of reproduction in common Bahiagrass, Paspalum notatum. J Am Soc Agron 40:443–452CrossRefGoogle Scholar
  9. Burton GW (1955) Breeding Pensacola bahiagrass. Paspalum notatum: I. Method of reproduction. Agron J 47:311–314CrossRefGoogle Scholar
  10. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448:497–500PubMedCrossRefGoogle Scholar
  12. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585PubMedCrossRefGoogle Scholar
  13. Clay NK, Nelson T (2002) VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell 14:2707–2722PubMedCentralPubMedCrossRefGoogle Scholar
  14. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES 1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dusi D (2001) Expression pattern of the Arabidopsis thaliana somatic embryogenesis receptor-like kinase (AtSERK1) gene in ovules of sexual and apomictic plants of Brachiaria decumbens. In: Apomixis in Brachiaria decumbens Stapf. Doctoral Thesis, Wageningen University, Department of Plant Sciences, pp 123–134Google Scholar
  16. Felitti SA, Seijo JG, González AM, Podio M, Laspina NV, Siena L, Ortiz JPA, Pessino SC (2011) Expression of lorelei-like genes in aposporous and sexual Paspalum notatum plants. Plant Mol Biol 77:337–354PubMedCrossRefGoogle Scholar
  17. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle, USAGoogle Scholar
  18. Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066PubMedCrossRefGoogle Scholar
  19. Forbes I, Burton GW (1961) Cytology of diploids, natural and induced tetraploids, and intraspecific hybrids of Bahiagrass, Paspalum notatum Flugge. Crop Sci 1:402–406CrossRefGoogle Scholar
  20. Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X et al (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:34–44PubMedCrossRefGoogle Scholar
  21. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011PubMedCrossRefGoogle Scholar
  22. Gou X, He K, Yang H, Yuan T, Lin H, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics 11:19PubMedCentralPubMedCrossRefGoogle Scholar
  23. He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115PubMedCrossRefGoogle Scholar
  24. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816PubMedCentralPubMedCrossRefGoogle Scholar
  25. Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222PubMedCrossRefGoogle Scholar
  26. Hong SW, Jon JH, Kwak JM, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203–1212PubMedCentralPubMedCrossRefGoogle Scholar
  27. Horn MA, Walker JC (1994) Biochemical properties of the autophosphorylation of RLK5, a receptor-like protein kinase from Arabidopsis thaliana. Biochim Biophys Acta 1208:65–74PubMedCrossRefGoogle Scholar
  28. Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine- rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108–117PubMedGoogle Scholar
  29. Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Mussig C et al (2007) The BRI1-associated kinase1, BAK1, has a brassinolide- independent role in plant cell-death control. Curr Biol 17:1116–1122PubMedCrossRefGoogle Scholar
  30. Koltunow AM (1993) Apomixis—embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437PubMedCentralPubMedGoogle Scholar
  31. Laspina NV, Vega T, Seijo JG, Gonzalez AM, Martelotto LG, Stein J, Podio M, Ortiz JPA, Echenique VC, Quarin CL, Pessino SC (2008) Gene expression analysis at the onset of aposporous apomixis in Paspalum notatum. Plant Mol Biol 67:615–628PubMedCrossRefGoogle Scholar
  32. Li J (2010) Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol 13:1–6CrossRefGoogle Scholar
  33. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938PubMedCrossRefGoogle Scholar
  34. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling. Cell 110:213–222PubMedCrossRefGoogle Scholar
  35. Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B (2009) Differential regulation of SERK, LEC1-Like and Pathogenesis-Related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol Bioch 47:743–752CrossRefGoogle Scholar
  36. Martínez EJ, Urbani MH, Quarin CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25PubMedCrossRefGoogle Scholar
  37. Martínez EJ, Hopp E, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479CrossRefGoogle Scholar
  39. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signalling. Cell 110:203–212PubMedCrossRefGoogle Scholar
  40. Nodine MD, Yadegari R, Tax FE (2007) RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev Cell 12:943–956PubMedCrossRefGoogle Scholar
  41. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518CrossRefGoogle Scholar
  42. Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60:1759–1771PubMedCrossRefGoogle Scholar
  43. Nolan KE, Kurdyukov K, Rose RJ (2011) Characterisation of the legume SERK-NIK gene superfamily including splice variants: implications for development and defense. BMC Plant Biol 11:44PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ochogavía AC, Seijo JG, González AM, Podio M, Laspina NV, Duarte Silveira E, Machado Lacerda AL, de Campos Tavares, Carneiro V, Pessino S (2011) Characterization of retrotransposon sequences expressed in inflorescences of apomictic and sexual Paspalum notatum plants. Sex Plant Reprod 24:231–246PubMedCrossRefGoogle Scholar
  45. Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signalling in Arabidopsis. Proc Natl Acad Sci USA 106:658–663PubMedCrossRefGoogle Scholar
  46. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632PubMedCrossRefGoogle Scholar
  47. Ortiz JPA, Pessino SC, Leblanc O, Hayward MD, Quarin CL (1997) Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theor Appl Genet 95:850–856CrossRefGoogle Scholar
  48. Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119PubMedCentralPubMedCrossRefGoogle Scholar
  49. Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A-Z of quantitative PCR. La Jolla, CA, USA, pp 1–20Google Scholar
  50. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acid Res 30:9e36Google Scholar
  51. Quarin CL, Urbani MH, Blount AR, Martínez EJ, Hack CM, Burton GW, Quesenberry KH (2003) Registration of Q4188 and Q4205, sexual tetraploid germplasm lines of Bahiagrass. Crop Sci 43:745–746CrossRefGoogle Scholar
  52. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  53. Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 27:833–843PubMedCrossRefGoogle Scholar
  54. Singla B, Khurana JP, Khurana P (2009) Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa). Int J Plant Genomics. doi: 10.1155/2009/539402 PubMedCentralPubMedGoogle Scholar
  55. Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance with preferential chromosome pairing and suppression of recombination around the apospory-controlling locus. Theor Appl Genet 109:186–191PubMedCrossRefGoogle Scholar
  56. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine- rich repeats. Plant Cell 8:735–746PubMedCentralPubMedGoogle Scholar
  57. Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J 54:30–42PubMedCrossRefGoogle Scholar
  58. Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt DL, Rossell JB, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537PubMedCentralPubMedCrossRefGoogle Scholar
  59. Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021–2031PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maricel Podio
    • 1
    • 2
  • Silvina Andrea Felitti
    • 1
  • Lorena Adelina Siena
    • 1
  • Luciana Delgado
    • 2
  • Micaela Mancini
    • 1
  • José Guillermo Seijo
    • 2
  • Ana María González
    • 2
  • Silvina Claudia Pessino
    • 1
  • Juan Pablo A. Ortiz
    • 1
    • 2
  1. 1.Laboratorio de Biología Molecular, Facultad de Ciencias AgrariasUniversidad Nacional de Rosario (UNR)ZavallaArgentina
  2. 2.Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE), CONICETUniversidad Nacional del Nordeste (UNNE)CorrientesArgentina

Personalised recommendations