Plant Molecular Biology

, Volume 84, Issue 1–2, pp 227–241 | Cite as

Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia

  • Frédéric Jullien
  • Sandrine Moja
  • Aurélie Bony
  • Sylvain Legrand
  • Cécile Petit
  • Tarek Benabdelkader
  • Kévin Poirot
  • Sébastien Fiorucci
  • Yann Guitton
  • Florence Nicolè
  • Sylvie Baudino
  • Jean-Louis Magnard


In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.


Lavandulaangustifolia L. 454 Pyrosequencing Terpene synthase Transcript regulation 



Cadinol synthase


β-Caryophyllene synthase


Essential oil(s)


Expressed sequence tag(s)




Farnesyl diphosphate


Germacrene D synthase


Geranyl diphosphate


L. angustifolia cadinol synthase


L. angustifolia β-caryophyllene synthase


L. angustifolia germacrene D synthase


Monoterpene synthase(s)


Quantitative realtime polymerase chain reaction


Sesquiterpene synthase(s)


Terpene synthase(s)



This work was supported by a Grant of the Rhône-Alpes county. We thank Dr. Busso who kindly provided the pHGGWA vector. We also thank Florence Gros for her technical contribution to this work. The IFF company and CRIEPPAM are also thanked for providing respectively basil rich τ-cadinol and L. angustifolia cv’Diva’ essential oils used as standards for τ-cadinol identification. We also thank Dr. Bendahmane (ENS Lyon) for critical reading and Frédéric Hache and Neil Finn (Department of Foreign Languages, UJM) for text revision).

Supplementary material

11103_2013_131_MOESM1_ESM.pptx (23.7 mb)
Supplementary material 1 (PPTX 24219 kb)
11103_2013_131_MOESM2_ESM.docx (86 kb)
Supplementary material 2 (DOCX 85 kb)
11103_2013_131_MOESM3_ESM.pptx (68 kb)
Supplementary material 3 (PPTX 67 kb)
11103_2013_131_MOESM4_ESM.pptx (1 mb)
Supplementary material 4 (PPTX 1059 kb)


  1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publ Corporation, Carol StreamGoogle Scholar
  2. Andersen L, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250PubMedCrossRefGoogle Scholar
  3. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeleton rearrangement. Proc Natl Acad Sci USA 94:10600–10605PubMedCrossRefGoogle Scholar
  4. Awadh-Ali NA, Wurster M, Arnold N, Lindequist U, Wessjohan L (2008) Chemical composition of the essential oil of Teucrium yemense Deflers. Rec Natl Prod 2:25–32Google Scholar
  5. Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154PubMedCrossRefGoogle Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Busso D, Busso BD, Moras D (2005) Construction of a set gateway-based destination vectors for high throughput cloning and expression screening in Escherichia coli. Anal Biochem 343:313–321PubMedCrossRefGoogle Scholar
  8. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San FranciscoGoogle Scholar
  9. Cheng SS, Wu CL, Chang HT, Kao YT, Chang ST (2004) Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. J Chem Ecol 30:1957–1967PubMedCrossRefGoogle Scholar
  10. Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442PubMedCrossRefGoogle Scholar
  11. Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J (2010) Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol Biol 73:587–603PubMedCrossRefGoogle Scholar
  12. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469PubMedCrossRefGoogle Scholar
  13. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637PubMedCrossRefGoogle Scholar
  14. Demissie ZA, Sarker LS, Mahmoud SS (2011) Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. Planta 233:685–696PubMedCrossRefGoogle Scholar
  15. Demissie ZA, Cella MA, Sarker LS, Thompson TJ, Rheault MR, Mahmoud S (2012) Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula. Plant Mol Biol 79:393–411PubMedCrossRefGoogle Scholar
  16. El-Shazly AM, Hussein KT (2004) chemical analysis and biological activities of the essential oil of Teucrium leucocladum Boiss. (Lamiaceae). Biochem Syst Ecol 32:665–674CrossRefGoogle Scholar
  17. Gennadios HA, Gonzalez V, Di Costanzo L, Li A, Yu F, Miller DJ, Allemann RK, Christianson DW (2009) Crystal structure of (+)-d-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry 48:6175–6183PubMedCrossRefGoogle Scholar
  18. Greenhagen BT, O’Maille PE, Noel JP, Chappell J (2006) Identifying and manipulating structural determinates linking catalytic specificities in terpene synthase. Proc Natl Acad Sci USA 103:9826–9831PubMedCrossRefGoogle Scholar
  19. Guitton Y, Nicolè F, Moja S, Valot N, Legrand S, Jullien F, Legendre L (2010) Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. × intermedia) inflorescence development. Physiol Plant 138:150–163PubMedCrossRefGoogle Scholar
  20. Gutensohn M, Orlova I, Nguyen TTH, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N (2013) Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J 75:351–363PubMedCrossRefGoogle Scholar
  21. Hellens R, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13. doi: 10.1186/1746-4811-1-13 PubMedCrossRefGoogle Scholar
  22. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  23. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci USA 104:5360–5365PubMedCrossRefGoogle Scholar
  24. Ibanez S, Dötterl S, Anstett M-C, Baudino S, Caissard J-C, Gallet C, Deprés L (2010) The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies. New Phytol 188:451–463PubMedCrossRefGoogle Scholar
  25. Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB (2005) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19:1994–2005Google Scholar
  26. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  27. Landmann C, Fink B, Festner M, Dregus M, Engel KH, Schwab W (2007) Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys 465:417–429PubMedCrossRefGoogle Scholar
  28. Lane A, Boecklemann A, Woronuk GN, Sarker L, Mahmoud SS (2010) A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231:835–845PubMedCrossRefGoogle Scholar
  29. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  30. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168PubMedCrossRefGoogle Scholar
  31. Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652CrossRefGoogle Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  33. Lupien S, Karp F, Wildung M, Croteau R (1999) Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (-)-4S-limonene-3-hydroxylase and (-)-4S-limonene-6-hydroxylase. Arch Biochem Biophys 368:181–192PubMedCrossRefGoogle Scholar
  34. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325PubMedCrossRefGoogle Scholar
  35. Mercke P, Crock J, Croteau R, Brodelius PE (1999) Cloning, expression and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Arch Biochem Biophys 369:213–222PubMedCrossRefGoogle Scholar
  36. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973PubMedCrossRefGoogle Scholar
  37. Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239PubMedCrossRefGoogle Scholar
  38. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in realtime PCR. Nucleic Acids Res 30:e36PubMedCrossRefGoogle Scholar
  39. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515PubMedCrossRefGoogle Scholar
  40. Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates R, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1-3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235PubMedCrossRefGoogle Scholar
  41. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria—a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524PubMedGoogle Scholar
  42. Rostkowski M, Olsson MH, Sondergaard CR, Jensen JH (2011) Graphical analysis of ph-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 11:6PubMedCrossRefGoogle Scholar
  43. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz SA, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  44. Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914PubMedCrossRefGoogle Scholar
  45. Tholl D (2006) Terpene synthases and the regulation, diversity and the biological roles of terpene metabolism. Curr Opin Plant Biol 9:1–8CrossRefGoogle Scholar
  46. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: research0034.1–0034.1Google Scholar
  47. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956PubMedCrossRefGoogle Scholar
  48. Wheeler CJ, Croteau R (1987) Direct demonstration of the isomerization component of the monoterpene cyclase reaction using a cyclopropylcarbinyl pyrophosphate substrate analog. Proc Natl Acad Sci USA 84:4856–4859PubMedCrossRefGoogle Scholar
  49. Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active pseudomature form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220PubMedCrossRefGoogle Scholar
  50. Yu F, Harada H, Yamasaki K, Okamoto S, Hirase S, Tanaka Y, Misawa N, Utsumi R (2008) Isolation and functional characterization of a b-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Lett 582:565–572PubMedCrossRefGoogle Scholar
  51. Zavala-Paramo G, Chavez-Moctezuma MP, Garcia-Pineda E, Yin S, Chappell J, Lozoya-Gloria E (2000) Isolation of an elicitor-stimulated 5-epi-aristolochene synthase (gPEAS1) from chili pepper (Capsicium annuum). Physiol Plant 110:410–418CrossRefGoogle Scholar
  52. Zhou K, Peters RJ (2009) Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 70:366–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Frédéric Jullien
    • 1
    • 2
    • 3
  • Sandrine Moja
    • 1
    • 2
    • 3
  • Aurélie Bony
    • 1
    • 2
    • 3
  • Sylvain Legrand
    • 1
    • 7
  • Cécile Petit
    • 1
    • 2
    • 3
  • Tarek Benabdelkader
    • 1
    • 5
  • Kévin Poirot
    • 1
  • Sébastien Fiorucci
    • 6
  • Yann Guitton
    • 4
  • Florence Nicolè
    • 1
    • 2
    • 3
  • Sylvie Baudino
    • 1
    • 2
    • 3
  • Jean-Louis Magnard
    • 1
    • 2
    • 3
  1. 1.Université de LyonSaint-ÉtienneFrance
  2. 2.Université de Saint-Etienne, Jean MonnetSaint-ÉtienneFrance
  3. 3.Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et MédicinalesSaint-ÉtienneFrance
  4. 4.Laboratoire Stress Abiotique et Différenciation des végétaux Cultivés, UMR Lille1/INRA 1281Université Lille 1Villeneuve d’Ascq CedexFrance
  5. 5.Laboratoire d’Ecophysiologie VégétaleEcole Normale SupérieureAlgerAlgeria
  6. 6.Institut de Chimie de Nice, UMR-CNRS 7272, Faculté des SciencesUniversité de Nice-Sophia AntipolisNice Cedex 2France
  7. 7.Stress Abiotique et Différenciation des végétaux Cultivés (SADV), UMR INRA 1281Université Lille Nord de FranceVilleneuve d’AscqFrance

Personalised recommendations