Plant Molecular Biology

, Volume 83, Issue 1–2, pp 77–87 | Cite as

Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research

  • Jiajia Xu
  • Yuanyuan Li
  • Xiuling Ma
  • Jianfeng Ding
  • Kai Wang
  • Sisi Wang
  • Ye Tian
  • Hui Zhang
  • Xin-Guang Zhu
Article

Abstract

Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

Keywords

Setaria viridis Whole transcriptome analysis Next-generation sequencing technologies C4 photosynthesis 

Supplementary material

11103_2013_25_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
11103_2013_25_MOESM2_ESM.xlsx (2.5 mb)
Supplementary material 2 (XLSX 2542 kb)
11103_2013_25_MOESM3_ESM.xlsx (17 kb)
Supplementary material 3 (XLSX 17 kb)
11103_2013_25_MOESM4_ESM.xlsx (14 kb)
Supplementary material 4 (XLSX 14 kb)
11103_2013_25_MOESM5_ESM.eps (56 mb)
Supplementary material 5 (EPS 57332 kb)

References

  1. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C-Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561PubMedCrossRefGoogle Scholar
  2. Brown RH, Bouton JH (1993) Physiology and genetics of interspecific hybrids between photosynthetic types. Annu Rev Plant Physiol Plant Mol Biol 44(1):435–456CrossRefGoogle Scholar
  3. Brown NJ, Parsley K, Hibberd JM (2005) The future of C4 research—maize, Flaveria or Cleome? Trends Plant Sci 10(5):215–221PubMedCrossRefGoogle Scholar
  4. Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22(8):2537–2544PubMedCrossRefGoogle Scholar
  5. Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7(1):272PubMedCrossRefGoogle Scholar
  6. Covshoff S, Hibberd JM (2012) Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr Opin Biotechnol 23(2):209–214PubMedCrossRefGoogle Scholar
  7. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149(1):137–141PubMedCrossRefGoogle Scholar
  8. Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62(9):3103–3108PubMedCrossRefGoogle Scholar
  9. Ghannoum O, Evans JR, von Caemmerer S (2010) Nitrogen and water use efficiency of C4 plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, vol 32. Advances in photosynthesis and respiration. Springer, The Netherlands, pp 129–146CrossRefGoogle Scholar
  10. Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88(11):1993–2012PubMedCrossRefGoogle Scholar
  11. Gordon A (2009) Fastx-toolkit. http://hannonlab.cshl.edu/fastx_toolkit/
  12. Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106CrossRefGoogle Scholar
  13. Hibberd JM, Covshoff S (2010) The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol 61(1):181–207PubMedCrossRefGoogle Scholar
  14. Huang L, Yang X, Sun P, Tang W, Hu S (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One 7(6):e38653Google Scholar
  15. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664PubMedGoogle Scholar
  16. Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645PubMedCrossRefGoogle Scholar
  17. Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23(11):3879–3892PubMedCrossRefGoogle Scholar
  18. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359PubMedCrossRefGoogle Scholar
  19. Lavagi I, Estelle M, Weckwerth W, Beynon J, Bastow RM (2012) From bench to bountiful harvests: a road map for the next decade of Arabidopsis research. Plant Cell 24:2240–2247PubMedCrossRefGoogle Scholar
  20. Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62(9):3031–3037PubMedCrossRefGoogle Scholar
  21. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760PubMedCrossRefGoogle Scholar
  22. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21(6):991–1007PubMedCrossRefGoogle Scholar
  23. Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E (2012) RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus. Fish Shellfish Immunol 32(5):816–827PubMedCrossRefGoogle Scholar
  24. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682PubMedCrossRefGoogle Scholar
  25. Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52(1):297–314PubMedCrossRefGoogle Scholar
  26. Mayer C (2006–2010) Phobos 3.3.11. http://www.rub.de/spezzoo/cm/cm_phobos.htm
  27. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46PubMedCrossRefGoogle Scholar
  28. Meyer E, Logan TL, Juenger TE (2012) Transcriptome analysis and gene expression atlas for Panicum hallii var. filipes, a diploid model for biofuel research. Plant J 70(5):879–890PubMedCrossRefGoogle Scholar
  29. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200PubMedCrossRefGoogle Scholar
  30. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34PubMedCrossRefGoogle Scholar
  31. Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. In: Parkinson J (ed) Expressed sequence tags (ESTs), vol 533. Methods in molecular biology. Humana Press, New York, pp 1–12CrossRefGoogle Scholar
  32. Peterhansel C (2011) Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J Exp Bot 62(9):3011–3019PubMedCrossRefGoogle Scholar
  33. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222Google Scholar
  34. Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62(9):2989–3000PubMedCrossRefGoogle Scholar
  35. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092PubMedCrossRefGoogle Scholar
  36. Sheen J (1999) C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50(1):187–217PubMedCrossRefGoogle Scholar
  37. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981PubMedCrossRefGoogle Scholar
  38. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111PubMedCrossRefGoogle Scholar
  39. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515PubMedCrossRefGoogle Scholar
  40. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578PubMedCrossRefGoogle Scholar
  41. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55PubMedCrossRefGoogle Scholar
  42. Wang L, Peterson RB, Brutnell TP (2011) Regulatory mechanisms underlying C4 photosynthesis. New Phytol 190(1):9–20CrossRefGoogle Scholar
  43. Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R (2012) Exploring the switchgrass transcriptome using second-generation sequencing technology. PLoS One 7(3):e34225PubMedCrossRefGoogle Scholar
  44. Williams BP, Aubry S, Hibberd JM (2012) Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci 17(4):213–220PubMedCrossRefGoogle Scholar
  45. Xie F, Burklew CE, Yang Y, Liu M, Xiao P, Zhang B, Qiu D (2012) De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta 236(1):101–113PubMedCrossRefGoogle Scholar
  46. Ye Y, Choi J-H, Tang H (2011) RAPSearch: a fast protein similarity search tool for short reads. BMC Bioinform 12(1):159CrossRefGoogle Scholar
  47. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99(2):193–208PubMedCrossRefGoogle Scholar
  48. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012a) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):549–554PubMedCrossRefGoogle Scholar
  49. Zhang Y, Jiang R, Wu H, Liu P, Xie J, He Y, Pang H (2012b) Next-generation sequencing-based transcriptome analysis of Cryptolaemus montrouzieri under insecticide stress reveals resistance-relevant genes in ladybirds. Genomics 100(1):35–41PubMedCrossRefGoogle Scholar
  50. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159PubMedCrossRefGoogle Scholar
  51. Zhu X-G, Shan LL, Wang Y, Quick WP (2010) C4 rice—an ideal arena for systems biology research. J Integr Plant Biol 52(8):762–770PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jiajia Xu
    • 1
    • 2
  • Yuanyuan Li
    • 1
    • 2
  • Xiuling Ma
    • 3
  • Jianfeng Ding
    • 3
  • Kai Wang
    • 3
  • Sisi Wang
    • 2
    • 3
  • Ye Tian
    • 1
    • 2
  • Hui Zhang
    • 2
    • 3
  • Xin-Guang Zhu
    • 1
    • 2
  1. 1.State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Key Laboratory of Computational Biology, CAS-MPG (Chinese Academy of Sciences-German Max Planck Society) Partner Institute for Computational Biology, Shanghai Institute of Biological SciencesChinese Academy of SciencesShanghaiChina
  3. 3.Key Lab of Plant Stress ResearchShandong Normal UniversityJinanChina

Personalised recommendations