Plant Molecular Biology

, Volume 79, Issue 4–5, pp 393–411 | Cite as

Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula

  • Zerihun A. Demissie
  • Monica A. Cella
  • Lukman S. Sarker
  • Travis J. Thompson
  • Mark R. Rheault
  • Soheil S. Mahmoud


Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni–NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K m and k cat values of 5.75 μM and 8.8 × 10−3 s−1, respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon–intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.


L. x intermedia L. angustifolia L. latifolia Essential oil Isoprenoids Monoterpene synthases 1,8-Cineole synthase Intron/exon 



1,8-Cineole synthase(s)


Diterpene synthase(s)


Essential oil(s)


Expressed Sequence Tag(s)


Geranyl diphosphate


Monoterpene synthase(s)


Sesquiterpene synthase(s)


Terpene synthase(s)


L. angustifolia 1,8-cineole synthase


L. angustifolia linalool synthase


L. angustifolia limonene synthase


L. angustifolia β-phellandrene synthase


L. x intermedia 1,8-cineole synthase


L. latifolia 1,8-cineole synthase


Neryl diphosphate



This work was supported through grants or in-kind contributions to SSM by UBC Okanagan campus, Investment Agriculture Foundation of British Columbia, NRC Plant Biotechnology Institute through the NAPGEN program, and Genome British Columbia, and to SSM and MRR by Natural Sciences and Engineering Research Council of Canada. ZAD would like to acknowledge the financial support through the Pacific Century Graduate Scholarships (PCGS) award from the province of British Columbia through the Ministry of Advanced Education. We would also like to thank Dr Tim Upson (Cambridge University, UK) for providing the L. latifolia leaf and flower tissues used in this study.

Supplementary material

11103_2012_9920_MOESM1_ESM.pdf (200 kb)
Transcriptional activity of MEP-pathway genes in leaves and floral tissues of L. angustifolia, L. x intermedia and L. latifolia. FL: 30 % flower and LF: leaf. (PDF 199 kb)
11103_2012_9920_MOESM2_ESM.pdf (65 kb)
SDS-PAGE analysis of protein samples from bacterial cells expressing LiCINS, and those transformed with the empty expression vector. (a) protein marker, (b) total protein from cells expressing LiCINS, (c) soluble proteins from cells expressing LiCINS, (d) purified LiCINS and, (e) purified protein (GST) from cells transformed with the empty pET41(b+) vector. (PDF 64 kb)
11103_2012_9920_MOESM3_ESM.pdf (37 kb)
GC chromatograms of Ni-NTA affinity chromatography purified soluble fraction from induced cells transformed with empty pET41(b+) product from GPP. Peak (1) is linalool and asterisks represent peaks without hit in the National Institute of Standards and Technology (NIST) library. (PDF 36 kb)
11103_2012_9920_MOESM4_ESM.pdf (18 kb)
Multiple alignments of 1,8-cineole synthase cDNAs of L. latifolia, L. angustifolia and L. x intermedia. Asterisks indicate conserved nucleotides in the three cDNAs while the polymorphic nucleotides are in bold and bigger font size. (PDF 18 kb)
11103_2012_9920_MOESM5_ESM.pdf (36 kb)
GC chromatogram of the recombinant L. angustifolia 1,8-cineole synthase (LaCINS) catalyzed products from GPP. Peaks correspond to: 1) sabinene, 2) α-phellandrene, 3) limonene, 4) 1,8-cineole, 5) linalool and 6) α-terpineol. (PDF 35 kb)
11103_2012_9920_MOESM6_ESM.xls (44 kb)
Supplementary material 6 (XLS 43 kb)
11103_2012_9920_MOESM7_ESM.doc (34 kb)
Supplementary material 7 (DOC 33 kb)
11103_2012_9920_MOESM8_ESM.doc (40 kb)
Supplementary material 8 (DOC 40 kb)


  1. Aon JC, Caimi RJ, Taylor AH, Lu Q, Oluboyede F, Dally J, Kessler MD, Kerrigan JJ, Lewis TS, Wysocki LA, Patel PS (2008) Suppressing posttranslational gluconoylation of heterologous proteins by metabolic engineering of Escherichia coli. Appl Environ Microbiol 74(4):950–958PubMedCrossRefGoogle Scholar
  2. Boeckelmann A (2008) Monoterpene production and regulation in lavenders (Lavandula angustifolia and Lavandula x intermedia). MSc Thesis, University of British Columbia Okanagan, pp 70–71, 154–156Google Scholar
  3. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95(8):4126–4133PubMedCrossRefGoogle Scholar
  4. Bohlmann J, Phillips M, Ramachandiran V, Katoh S, Croteau R (1999) cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys 368(2):232–243PubMedCrossRefGoogle Scholar
  5. Cai Y, He J, Li X, Feng K, Lu L, Feng K, Kong X, Lu W (2010) Prediction of protein subcellular locations with feature selection and analysis. Protein Pept Lett 17(4):464–472PubMedCrossRefGoogle Scholar
  6. Cavanagh HMA, Wilkinson JM (2002) Biological activities of lavender essential oil. Phytother Res 16(4):301–308PubMedCrossRefGoogle Scholar
  7. Chayet L, Rojas MC, Cori O (1984) Complexes of bivalent cations with neryl and geranyl pyrophosphate: their role in terpene biosynthesis. Bioorg Chem 12:329–338CrossRefGoogle Scholar
  8. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229PubMedCrossRefGoogle Scholar
  9. Christianson WD (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442PubMedCrossRefGoogle Scholar
  10. Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R (2002) Molecular cloning and characterization of a new linalool synthase. Arch Biochem Biophys 405(1):112–121PubMedCrossRefGoogle Scholar
  11. Cseke L, Dudareva N, Pichersky E (1998) Structure and evolution of linalool synthase. Mol Biol Evol 15(11):1491–1498PubMedCrossRefGoogle Scholar
  12. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15–16):1621–1637PubMedCrossRefGoogle Scholar
  13. Demissie ZA, Sarker LS, Mahmoud SS (2011) Cloning and functional charaterization of ß-phellandrene synthase from Lavandula angustifolia. Planta 233:685–696PubMedCrossRefGoogle Scholar
  14. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J, Guindon S, Lefort V, Lescot M, Claverie J, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 1(36):W465–W469CrossRefGoogle Scholar
  15. Desautels A, Biswas K, Lane A, Boeckelmann A, Mahmoud SS (2009) Suppression of linalool acetate production in Lavandula x intermedia. Nat Product Commun 4(11):1533–1536Google Scholar
  16. Dewick PM (2009) Medicinal Natural products: a biosynthetic approach. Wiley, Chichester, pp 167–186Google Scholar
  17. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2009) Geneious v5.0.3. Available from
  18. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938PubMedCrossRefGoogle Scholar
  19. Fähnrich A, Krause K, Piechulla B (2011) Product variability of the ‘Cineole Cassette’ monoterpene synthases of related Nicotiana species. Mol Plant 49:1–20Google Scholar
  20. Falk L, Biswas K, Boeckelmann A, Lane A, Mahmoud SS (2009) An efficient method for the micropropagation of lavenders: regeneration of a unique mutant. J Essent Oil Res 21(3):225–228CrossRefGoogle Scholar
  21. Fischer H, Polikarpov I, Craievich AF (2004) Average protein density is a molecular-weight-dependent function. Protein Sci 13(10):2825–2828PubMedCrossRefGoogle Scholar
  22. Franks SJ, Wheeler GS, Goodnight C (2012) Genetic variation and evolution of secondary compounds in native and introduced populations of the invasive plant Melaleuca qunquenervia. doi: 10.1111/j.1558-5646.2011.01524.x
  23. Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihiliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200(1):130–138PubMedCrossRefGoogle Scholar
  24. Gershenzon J, McConkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122(1):205–214PubMedCrossRefGoogle Scholar
  25. Gershenzone J, Croteau R (1991) Herbivores: Their Interactions with Secondary Plant Metabolites. In: Rosenthal GA, Berenbaum M(eds) Terpenoids: The Chemical Participants. Academic Press, San Diego, California, Vol I (2nd ed), pp 165–219Google Scholar
  26. Gilles M, Zhao J, An M, Agboola S (2010) Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem 119:731–737CrossRefGoogle Scholar
  27. Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16(2):54–60PubMedCrossRefGoogle Scholar
  28. Harborne JB, Baxter H (2001) Chemical dictionary of economic plants. Wiley, Chichester, pp 80–81Google Scholar
  29. Hardison RS (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci USA 93:5675–5679PubMedCrossRefGoogle Scholar
  30. Juergens UR, Dethlefsenw U, Steinkampz G, Gillissen A, Repgesz R, Vetter H (2003) Anti-inflammatory activity of 1,8-cineole (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respiratory Med 97:250–256CrossRefGoogle Scholar
  31. Juergens UR, Engelen T, Racke K, Stöber M, Gillissen A, Vetter H (2004) Inhibitory activity of 1,8-cineole (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulmonary Pharmacol Therap 17:281–287CrossRefGoogle Scholar
  32. Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19(6):1994–2005PubMedCrossRefGoogle Scholar
  33. Keegstra K, Olsen LJ, Theg SM (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Phys 40(1):471–501CrossRefGoogle Scholar
  34. Kehrl W, Sonnemann U, Dethlefsen U (2004) Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial. Laryngoscope 114:738–742PubMedCrossRefGoogle Scholar
  35. Khan MA, Hussain I, Khan EA (2008) Allelopathic effects of Eucalyptus (Eucalyptus camaldulensis L.) on germination and seedling growth of wheat (Triticum aestivum L.). Pak J Weed Sci Res 14(1–2):9–18Google Scholar
  36. Kim KM, Yi EC, Baker D, Zhang KY (2001) Post-translational modification of the N-terminal His tag interferes with the crystallization of the wild-type and mutant SH3 domains from chicken src tyrosine kinase. Acta Crystallogr D Biol Crystallogr 57(P5):759–762Google Scholar
  37. Klocke JA, Darlington MV, Balandrin MF (1987) 1,8-Cineole (Eucalyptol), a mosquito feeding and ovipositional repellent from volatile oil of Hemizonia fitchii (Asteraceae). J Chem Ecol 13(12):2131–2141CrossRefGoogle Scholar
  38. Külheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genom 10:452–463CrossRefGoogle Scholar
  39. Lahora S, Figueiredo AF, Magalhães PJC, Leal-Cardoso JH (2002) Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can J Physiol Pharmacol 80:1125–1131CrossRefGoogle Scholar
  40. Landmann C, Fink B, Festner M, Dregus M, Engel K, Schwab W (2007) Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys 465(2):417–429PubMedCrossRefGoogle Scholar
  41. Lane A, Boecklemann A, Woronuk G, Sarker L, Mahmoud S (2010) A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231(4):835–845PubMedCrossRefGoogle Scholar
  42. Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033PubMedCrossRefGoogle Scholar
  43. Lis-Balchin M (2002) Chemical composition of essential oils from different species, hybrids and cultivars of Lavandula. In: Lis-Balchin M (ed) Lavender: the genus Lavandula. Taylor & Francis, London, pp 251–262Google Scholar
  44. Maciel MV, Morais SM, Bevilaqua CML, Silva RA, Barros RS, Sousa RN, Sousa LC, Brito ES, Souza-Neto MA (2010) Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet Parasit 167:1–7CrossRefGoogle Scholar
  45. Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98(15):8915–8920PubMedCrossRefGoogle Scholar
  46. Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100(24):14481–14486PubMedCrossRefGoogle Scholar
  47. Mahmoud SS, Croteau RB (2004) Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65(5):547–554PubMedCrossRefGoogle Scholar
  48. Mathews CM, Trotman CAN (1998) Ancient and recent intron stability in Artemia hemoglobin gene. J Mol Evol 47:763–771CrossRefGoogle Scholar
  49. McCaskill D, Croteau RB (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197(1):49–56CrossRefGoogle Scholar
  50. McCaskill D, Gershenzon J, Croteau R (1992) Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187:445–454CrossRefGoogle Scholar
  51. McConkey ME, Gershenzon J, Croteau RB (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122(1):215–224PubMedCrossRefGoogle Scholar
  52. Menges M, Pavesi G, Morandini P, Bogre L, Murray JAH (2007) Genomic organization and evolutionary conservation of plant D-Type cyclins. Plant Physiol 145(4):1558–1576PubMedCrossRefGoogle Scholar
  53. Munõz-Bertomeu J, Arrillaga I, Segura J (2007) Essential oil variation within and among natural populations of Lavandula latifolia and its relation to their ecological areas. Biochem Syst Ecol 35(8):479–488CrossRefGoogle Scholar
  54. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584(14):2965–2973PubMedCrossRefGoogle Scholar
  55. Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55(2):224–239PubMedCrossRefGoogle Scholar
  56. Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends in Plant Sci 13(12):619–623CrossRefGoogle Scholar
  57. Raguso RA, Schlumpberger BO, Kaczorowski RL, Holtsford TP (2006) Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 67:1931–1942PubMedCrossRefGoogle Scholar
  58. Rodriguez-Concepcion M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois LM, Gallego F, Carretero-Paulet L, Campos N, Boronat A (2001) 1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J 27:213–222PubMedCrossRefGoogle Scholar
  59. Roeder S, Hartmann A, Effmert U, Piechulla B (2007) Regulation of simultaneous synthesis of floral scent terpenoids by the 1, 8-cineole synthase of Nicotiana suaveolens. Plant Mol Biol 65(1):107–124PubMedCrossRefGoogle Scholar
  60. Santos FA, Rao VSN (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytotherapy Res 14(4):240–244CrossRefGoogle Scholar
  61. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106(26):10865–10870PubMedCrossRefGoogle Scholar
  62. Sfara V, Zerba EN, Alzogaray RA (2009) Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. J Med Ent 46(3):511–515CrossRefGoogle Scholar
  63. Shimada T, Endo T, Fujii H, Hara M, Omura M (2005) Isolation and characterization of (E)-beta-ocimene and 1,8-cineole synthases in Citrus unshiu Marc. Plant Sci 168(4):987–995CrossRefGoogle Scholar
  64. Southwell IA, Russell MF, Maddox CDA, Wheeler GS (2003) Differential metabolism of 1,8-cineole in insects. J Chem Ecol 29(1):83–94PubMedCrossRefGoogle Scholar
  65. Tesche S, Metternich F, Sonnemann U, Engelke JC, Dethlefse U (2008) The value of herbal medicines in the treatment of acute non-purulent rhinosinusitis: Results of a double-blind, randomised, controlled trial. Eur Arch Otorhinolaryngol 265:1355–1359PubMedCrossRefGoogle Scholar
  66. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:1–8CrossRefGoogle Scholar
  67. Tholl D, Croteau RB, Gershenzon J (2001) Partial purification and characterization of the short-chain prenyltransferases, geranyl diphosphate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir). Arch Biochem Biophys 386(2):233–242PubMedCrossRefGoogle Scholar
  68. Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832PubMedGoogle Scholar
  69. Turner GJ, Gershenzon J, Nielson EE, Froehlich JE, Croteau RB (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886PubMedCrossRefGoogle Scholar
  70. Turner GW, Gershenzon J, Croteau RB (2000a) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–680PubMedCrossRefGoogle Scholar
  71. Turner GW, Gershenzon J, Croteau RB (2000b) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol 124:655–664PubMedCrossRefGoogle Scholar
  72. Upson T (2002) The taxonomy of genus Lavandula L. In: Lis-Balchin M (ed) Lavender: the genus Lavandula. Taylor & Francis, London, pp 2–34Google Scholar
  73. Upson T, Andrew S (2004) The genus Lavandula. Timber Press, Portland, pp 78–85Google Scholar
  74. Von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180(3):535–545CrossRefGoogle Scholar
  75. Wendt KU, Schulz GE (1998) Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 6(2):127–133PubMedCrossRefGoogle Scholar
  76. Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase pre-protein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37(35):12213–12220PubMedCrossRefGoogle Scholar
  77. Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane DD (ed) Comprehensive natural products chemistry: isoprenoids including carotenoids and steroids, vol 2. Elsevier Science, Amsterdam, pp 97–153Google Scholar
  78. Wise ML, Savage TJ, Katahira E, Croteau R (1998) Monoterpene synthases from common sage (Salvia officinalis). J Biol Chem 273:14891–14899PubMedCrossRefGoogle Scholar
  79. Woronuck G, Demissie Z, Rheault M, Mahmoud S (2011) Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Med 77(1):7–15CrossRefGoogle Scholar
  80. Zeng G (1998) Sticky-end PCR: new method for subcloning. Biotechniques 25:206–208PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zerihun A. Demissie
    • 1
  • Monica A. Cella
    • 1
  • Lukman S. Sarker
    • 1
  • Travis J. Thompson
    • 1
  • Mark R. Rheault
    • 1
  • Soheil S. Mahmoud
    • 1
  1. 1.Department of BiologyUniversity of British ColumbiaKelownaCanada

Personalised recommendations