Plant Molecular Biology

, Volume 79, Issue 4–5, pp 359–373 | Cite as

A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility

  • Mauro A. Rinaldi
  • James Liu
  • Tara A. Enders
  • Bonnie Bartel
  • Lucia C. Strader
Article

Abstract

Auxin regulates many aspects of plant development, in part, through degradation of the Aux/IAA family of transcriptional repressors. Consequently, stabilizing mutations in several Aux/IAA proteins confer reduced auxin responsiveness. However, of the 29 apparent Aux/IAA proteins in Arabidopsis thaliana, fewer than half have roles established through mutant analysis. We identified iaa16-1, a dominant gain-of-function mutation in IAA16 (At3g04730), in a novel screen for reduced root responsiveness to abscisic acid. The iaa16-1 mutation also confers dramatically reduced auxin responses in a variety of assays, markedly restricts growth of adult plants, and abolishes fertility when homozygous. We compared iaa16-1 phenotypes with those of dominant mutants defective in the closely related IAA7/AXR2, IAA14/SLR, and IAA17/AXR3, along with the more distantly related IAA28, and found overlapping but distinct patterns of developmental defects. The identification and characterization of iaa16-1 provides a fuller understanding of the IAA7/IAA14/IAA16/IAA17 clade of Aux/IAA proteins and the diverse roles of these repressors in hormone response and plant development.

Keywords

Auxin signaling Abscisic acid Aux/IAA gain of function IAA16 

Supplementary material

11103_2012_9917_MOESM1_ESM.pdf (63 kb)
Supplementary material 1 (PDF 63 kb)
11103_2012_9917_MOESM2_ESM.pdf (187 kb)
Supplementary material 2 (PDF 187 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115PubMedGoogle Scholar
  3. Belin C, Megies C, Hauserova E, Lopez-Molina L (2009) Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21:2253–2268PubMedCrossRefGoogle Scholar
  4. Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144PubMedCrossRefGoogle Scholar
  5. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75PubMedCrossRefGoogle Scholar
  6. Calderon-Villalobos LI, Tan X, Zheng N, Estelle M (2010) Auxin perception–structural insights. Cold Spring Harb Perspect Biol 2:a005546PubMedCrossRefGoogle Scholar
  7. Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142PubMedCrossRefGoogle Scholar
  8. Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785PubMedCrossRefGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  10. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469PubMedCrossRefGoogle Scholar
  11. Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241PubMedCrossRefGoogle Scholar
  12. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  13. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119PubMedCrossRefGoogle Scholar
  14. dos Santos Maraschin F, Memelink J, Offringa R (2009) Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109CrossRefGoogle Scholar
  15. Dreher KA, Brown J, Saw RE, Callis J (2006) The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18:699–714PubMedCrossRefGoogle Scholar
  16. Finkelstein RR (1994) Maternal effects govern variable dominance of two abscisic acid response mutations in Arabidopsis thaliana. Plant Physiol 105:1203–1208PubMedGoogle Scholar
  17. Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809PubMedCrossRefGoogle Scholar
  18. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168PubMedCrossRefGoogle Scholar
  19. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573PubMedCrossRefGoogle Scholar
  20. Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202PubMedCrossRefGoogle Scholar
  21. Grierson C, Schiefelbein J (2002) Root hairs: April 4, 2002. In: The Arabidopsis Book. American Society of Plant Biologists, Rockville, p 1:e0060Google Scholar
  22. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460PubMedCrossRefGoogle Scholar
  23. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385PubMedCrossRefGoogle Scholar
  24. Hamann T, Mayer U, Jürgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395PubMedGoogle Scholar
  25. Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615PubMedCrossRefGoogle Scholar
  26. Haughn GW, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434CrossRefGoogle Scholar
  27. Himmelbach A, Iten M, Grill E (1998) Signalling of abscisic acid to regulate plant growth. Philos Trans R Soc Lond B Biol Sci 353:1439–1444PubMedCrossRefGoogle Scholar
  28. Kepinski S, Leyser O (2004) Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci USA 101:12381–12386PubMedCrossRefGoogle Scholar
  29. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  30. Kim BC, Soh MS, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J 9:441–456PubMedCrossRefGoogle Scholar
  31. Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791PubMedCrossRefGoogle Scholar
  32. Kim BC, Soh MS, Hong SH, Furuya M, Nam HG (1998) Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness. Plant J 15:61–68PubMedCrossRefGoogle Scholar
  33. Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777PubMedCrossRefGoogle Scholar
  34. Koncz C, Schell J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396CrossRefGoogle Scholar
  35. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410PubMedCrossRefGoogle Scholar
  36. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383CrossRefGoogle Scholar
  37. Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861PubMedCrossRefGoogle Scholar
  38. Leyser HMO, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413PubMedCrossRefGoogle Scholar
  39. Li H, Tiwari SB, Hagen G, Guilfoyle TJ (2011) Identical amino acid substitutions in the repression domain of auxin/indole-3-acetic acid proteins have contrasting effects on auxin signaling. Plant Physiol 155:1252–1263PubMedCrossRefGoogle Scholar
  40. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400PubMedCrossRefGoogle Scholar
  41. Maher EP, Martindale SJB (1980) Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet 18:1041–1053PubMedCrossRefGoogle Scholar
  42. Masson PH (1995) Root gravitropism. BioEssays News Rev Mol cell Dev Biol 17:119–127Google Scholar
  43. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80PubMedCrossRefGoogle Scholar
  44. Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15:2979–2991PubMedCrossRefGoogle Scholar
  45. Muto H, Watahiki MK, Nakamoto D, Kinjo M, Yamamoto KT (2007) Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiol 144:187–196PubMedCrossRefGoogle Scholar
  46. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–573PubMedCrossRefGoogle Scholar
  47. Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841PubMedGoogle Scholar
  48. Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300PubMedCrossRefGoogle Scholar
  49. Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446PubMedCrossRefGoogle Scholar
  50. Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20:1907–1912PubMedCrossRefGoogle Scholar
  51. Ramos JA, Zenser N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13:2349–2360PubMedGoogle Scholar
  52. Reed JW, Elumalai RP, Chory J (1998) Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics 148:1295–1310PubMedGoogle Scholar
  53. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752PubMedCrossRefGoogle Scholar
  54. Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222:98–106PubMedCrossRefGoogle Scholar
  55. Rogg LE (2001) Cloning and characterization of IAA28, a gene involved in suppressing lateral root development and mediating auxin responses in Arabidopsis thaliana. Rice University, Houston, PhDGoogle Scholar
  56. Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480PubMedGoogle Scholar
  57. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373PubMedCrossRefGoogle Scholar
  58. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506PubMedCrossRefGoogle Scholar
  59. Stasinopoulos TC, Hangarter RP (1990) Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol 93:1365–1369PubMedCrossRefGoogle Scholar
  60. Strader LC, Monroe-Augustus M, Bartel B (2008a) The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation. BMC Plant Biol 8:41PubMedCrossRefGoogle Scholar
  61. Strader LC, Monroe-Augustus M, Rogers KC, Lin GL, Bartel B (2008b) Arabidopsis iba response5 (ibr5) suppressors separate responses to various hormones. Genetics 180:2019–2031PubMedCrossRefGoogle Scholar
  62. Sundberg E, Ostergaard L (2009) Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 1:a001628PubMedCrossRefGoogle Scholar
  63. Swofford DL (2001) PAUP*. Phylogenetic analysis using parsimony (and other methods), 4th edn. Sinauer Associates, SunderlandGoogle Scholar
  64. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386PubMedCrossRefGoogle Scholar
  65. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedCrossRefGoogle Scholar
  66. Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393PubMedCrossRefGoogle Scholar
  67. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721PubMedGoogle Scholar
  68. Timpte C, Wilson AK, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249PubMedGoogle Scholar
  69. Uehara T, Okushima Y, Mimura T, Tasaka M, Fukaki H (2008) Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol 49:1025–1038PubMedCrossRefGoogle Scholar
  70. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedGoogle Scholar
  71. Vandenbussche F, Petrášek J, Žádníková P, Hoyerová K, Pešek B, Raz V, Swarup R, Bennett M, Zažímalová E, Benková E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606PubMedCrossRefGoogle Scholar
  72. Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508PubMedCrossRefGoogle Scholar
  73. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217PubMedCrossRefGoogle Scholar
  74. Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885PubMedCrossRefGoogle Scholar
  75. Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene, and abscisic acid. Mol Gen Genet 222:377–383PubMedCrossRefGoogle Scholar
  76. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718PubMedCrossRefGoogle Scholar
  77. Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21:553–562PubMedCrossRefGoogle Scholar
  78. Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J 40:772–782PubMedCrossRefGoogle Scholar
  79. Žádníková P, Petrášek J, Marhavý P, Raz V, Vandenbussche F, Ding Z, Schwarzerová K, Morita MT, Tasaka M, Hejátko J, Van Der Straeten D, Friml J, Benková E (2010) Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137:607–617PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mauro A. Rinaldi
    • 2
  • James Liu
    • 2
    • 3
  • Tara A. Enders
    • 1
  • Bonnie Bartel
    • 2
  • Lucia C. Strader
    • 1
  1. 1.Department of BiologyWashington UniversitySt. LouisUSA
  2. 2.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA
  3. 3.EpicMadisonUSA

Personalised recommendations