Plant Molecular Biology

, Volume 79, Issue 1–2, pp 179–189 | Cite as

Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family

  • Zheng Liu
  • Arvind H. Hirani
  • Peter B. E. McVetty
  • Fouad Daayf
  • Carlos F. Quiros
  • Genyi Li
Article

Abstract

The hydrolytic products of glucosinolates in brassica crops are bioactive compounds. Some glucosinolate derivatives such as oxazolidine-2-thione from progoitrin in brassica oilseed meal are toxic and detrimental to animals, but some isothiocyanates such as sulforaphane are potent anti-carcinogens that have preventive effects on several human cancers. In most B. rapa, B. napus and B. juncea vegetables and oilseeds, there is no or only trace amount of glucoraphanin that is the precursor to sulforaphane. In this paper, RNA interference (RNAi) of the GSL-ALK gene family was used to down-regulate the expression of GSL-ALK genes in B. napus. The detrimental glucosinolate progoitrin was reduced by 65 %, and the beneficial glucosinolate glucoraphanin was increased to a relatively high concentration (42.6 μmol g−1 seed) in seeds of B. napus transgenic plants through silencing of the GSL-ALK gene family. Therefore, there is potential application of the new germplasm with reduced detrimental glucosinolates and increased beneficial glucosinolates for producing improved brassica vegetables.

Keywords

Brassica napus Glucosinolates Gene silencing GSL-ALK genes 

Notes

Acknowledgments

The research was supported by the Genome Canada/Genome Alberta and Genome Prairie and Manitoba Provincial Government, and by NSERC discovery grant.

Supplementary material

11103_2012_9905_MOESM1_ESM.xls (36 kb)
Supplementary material 1 (XLS 36 kb)
11103_2012_9905_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)
11103_2012_9905_MOESM3_ESM.rtf (150 kb)
Supplementary material 3 (RTF 149 kb)
11103_2012_9905_MOESM4_ESM.xls (26 kb)
Supplementary material 4 (XLS 25 kb)

References

  1. Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RC, Morandini P, Aarts MG, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3:e2068PubMedCrossRefGoogle Scholar
  2. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372PubMedCrossRefGoogle Scholar
  3. Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Terce F (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in Ht29 human colon cancer cells. Cancer Res 60:1426–1433PubMedGoogle Scholar
  4. Gao M, Li G, Yang B, McCombie RW, Quiros CF (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679PubMedCrossRefGoogle Scholar
  5. Gigolashvili T, Yatusevich R, Berger B, Muller C, Flugge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261PubMedCrossRefGoogle Scholar
  6. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis thaliana glucosinolate accumulation. Plant Physiol 126:811–825PubMedCrossRefGoogle Scholar
  7. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548PubMedCrossRefGoogle Scholar
  8. Li G, Quiros CF (2003) The Brassica oleracea gene BoGSL- ALK regulates in planta alkenyl aliphatic glucosinolates in Arabidopsis thaliana. Theor Appl Genet 106:1116–1121PubMedGoogle Scholar
  9. Li G, Riaz A, Goyal S, Abel S, Quiros CF (2001) Inheritance of three major genes involved in the synthesis of aliphatic glucosinolates in Brassica oleracea. J Am Soc Hortic Sci 126:427–431Google Scholar
  10. Li G, Gao M, Yang B, Quiros CF (2003) Gene to gene alignment between the Arabidopsis and Brassica oleracea genomes. Theor Appl Genet 107:168–180PubMedCrossRefGoogle Scholar
  11. Liu Z, Hammerlindl J, Keller W, McVetty PBE, Daayf F, Quiros CF, Li G (2010) MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side chain aliphatic glucosinolates in Brassica napus. Mol Breed 27:467–478CrossRefGoogle Scholar
  12. Lou P, Zhao J, He H, Hanhart C, Del Carpio DP, Verkerk R, Custers J, Koornneef M, Bonnema G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032PubMedCrossRefGoogle Scholar
  13. Magrath R, Herron C, Giamoustaris A, Mithen R (1993) The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed 111:55–72CrossRefGoogle Scholar
  14. Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106:727–734PubMedGoogle Scholar
  15. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242CrossRefGoogle Scholar
  16. Neal CS, Fredericks DP, Griffiths CA, Neale AD (2010) The characterization of AOP2: a gene associated with biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10:170–186PubMedCrossRefGoogle Scholar
  17. Nour-Eldin HH, Hansen BG, Norholm MHH, Jensen JK, Halkier BA (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34:e122PubMedCrossRefGoogle Scholar
  18. Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367PubMedCrossRefGoogle Scholar
  19. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215Google Scholar
  20. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10:501–508PubMedGoogle Scholar
  21. Shapiro TA, Fahey JW, Dinkova-Kostova AT et al (2006) Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 55:53–62PubMedCrossRefGoogle Scholar
  22. Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA et al (2007) A systems biology approach Identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2:e1322PubMedCrossRefGoogle Scholar
  23. Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 47:231–238CrossRefGoogle Scholar
  24. Vinjamoori V, Byrum JR, Hayes T, Das PK (2004) Challenges and opportunities in the analysis of raffinose oligosaccharides, pentosans. J Anim Sci 82:319–328PubMedGoogle Scholar
  25. Zhang GY, Talalay P, Cho C, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zheng Liu
    • 1
  • Arvind H. Hirani
    • 1
  • Peter B. E. McVetty
    • 1
  • Fouad Daayf
    • 1
  • Carlos F. Quiros
    • 2
  • Genyi Li
    • 1
  1. 1.Department of Plant ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations