Advertisement

Plant Molecular Biology

, Volume 78, Issue 6, pp 599–615 | Cite as

The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases

  • Teresa Docimo
  • Michael Reichelt
  • Bernd Schneider
  • Marco Kai
  • Grit Kunert
  • Jonathan Gershenzon
  • John C. D’AuriaEmail author
Article

Abstract

Despite the long history of cocaine use among humans and its social and economic significance today, little information is available about the biochemical and molecular aspects of cocaine biosynthesis in coca (Erythroxylum coca) in comparison to what is known about the formation of other pharmacologically-important tropane alkaloids in species of the Solanaceae. In this work, we investigated the site of cocaine biosynthesis in E. coca and the nature of the first step. The two principal tropane alkaloids of E. coca, cocaine and cinnamoyl cocaine, were present in highest concentrations in buds and rolled leaves. These are also the organs in which the rate of alkaloid biosynthesis was the highest based on the incorporation of 13CO2. In contrast, tropane alkaloids in the Solanaceae are biosynthesized in the roots and translocated to the leaves. A collection of EST sequences from a cDNA library made from young E. coca leaves was employed to search for genes encoding the first step in tropane alkaloid biosynthesis. Full-length cDNA clones were identified encoding two candidate enzymes, ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), and the enzymatic activities of the corresponding proteins confirmed by heterologous expression in E. coli and complementation of a yeast mutant. The transcript levels of both ODC and ADC genes were highest in buds and rolled leaves and lower in other organs. The levels of both ornithine and arginine themselves showed a similar pattern, so it was not possible to assign a preferential role in cocaine biosynthesis to one of these proteins.

Keywords

Erythroxylum coca Tropane alkaloids Cocaine Ornithine and arginine decarboxylases 

Abbreviations

qRT–PCR

Quantitative reverse transcriptase–polymerase chain reaction

LC–MS

Liquid chromatography–mass spectrometry

ESTs

Expressed sequence tags

NMR

Nuclear magnetic resonance

GC–MS

Gas chromatography–mass spectrometry

HPLC–UV–DAD

High performance liquid chromatography–ultraviolet–diode array detection

HEPES

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

ESI

Electrospray ionization

Notes

Acknowledgments

We thank Dr. Michael A. Phillips, for his help with the E. coca cDNA library, Katrin Luck for technical assistance, Dr Christian Paetz for help with the 13CO2 experiment, Gregor Schmidt for his help with qPCR normalization and Jan Jirschitzka for helping with the editing of the manuscript. In addition, we thank Prof Herbert Tabor for kindly providing the S. cerevisie ∆ mutant. Lastly, we thank Dr. Tamara Krügel, Andreas Weber and the rest of the gardening staff of the MPI-ICE for their help in plant maintenance. This work was supported by the Max Planck Society and an Alexander von Humboldt Foundation postdoctoral fellowship to J.D.

Supplementary material

11103_2012_9886_MOESM1_ESM.pdf (444 kb)
Supplementary material 1 (PDF 443 kb)

References

  1. Ahmad A, Leete E (1970) Biosynthesis of tropine moiety of hyoscyamine from delta-N-methylornithine. Phytochemistry 9(11):2345–2347CrossRefGoogle Scholar
  2. Akiyama T, Jin S (2007) Molecular cloning and characterization of an arginine decarboxylase gene up-regulated by chilling stress in rice seedlings. J Plant Physiol 164(5):645–654. doi: 10.1016/j.jplph.2006.04.006 PubMedCrossRefGoogle Scholar
  3. Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci USA 87(14):5509–5513PubMedCrossRefGoogle Scholar
  4. Alyahya AI, Evans WC, Grout RJ (1979) Alkaloids of the genus Erythroxylum.2. Erythroxylum-Dekindtii (Engl) oe-Schultz. J Chem Soc Perkin Trans 1(9):2130–2132Google Scholar
  5. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiol 13(10):93R–104R. doi: 10.1093/glycob/cwg090 CrossRefGoogle Scholar
  6. Balasundaram D, Dinman JD, Tabor CW, Tabor H (1994) SPE1 and SPE2–2 essential genes in the biosynthesis of polyamines that modulates +1-ribosomial frameshifting in Saccharomyces-cerevisiae. J Bacteriol 176(22):7126–7128PubMedGoogle Scholar
  7. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18(2):298–305PubMedCrossRefGoogle Scholar
  8. Biastoff S, Brandt W, Drager B (2009) Putrescine N-methyltransferase—the start for alkaloids. Phytochemistry 70(15–16):1708–1718. doi: 10.1016/j.phytochem.2009.06.012 PubMedCrossRefGoogle Scholar
  9. Bieri S, Brachet A, Veuthey JL, Christen P (2006) Cocaine distribution in wild Erythroxylum species. J Ethnopharm 103(3):439–447. doi: 10.1016/j.jcp.2005.08.021 CrossRefGoogle Scholar
  10. Birecka H, Birecki M, Frohlich MW (1987) Evidence for arginine as the endogenous precursor of necines in Heliotropium. Plant Physiol 84(1):42–46PubMedCrossRefGoogle Scholar
  11. Bjorklund JA, Leete E (1992) Biosynthesis of the tropane alkaloids and related-compounds.49. Biosynthesis of the benzoyl moiety of cocaine from cinnamic acid via (R)-(+)-3-hydroxy-3-phenylpropanoic acid. Phytochemistry 31 (11):3883–3887Google Scholar
  12. Borrell A, Culianezmacia FA, Altabella T, Besford RT, Flores D, Tiburcio AF (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109(3):771–776PubMedGoogle Scholar
  13. Bortolotti C, Cordeiro A, Alcazar R, Borrell A, Culianez-Macia FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120(1):84–92PubMedCrossRefGoogle Scholar
  14. Brachet A, Munoz O, Gupta M, Veuthey JL, Christen P (1997) Alkaloids of erythroxylum lucidum stem-bark. Phytochemistry 46(8):1439–1442CrossRefGoogle Scholar
  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):7Google Scholar
  16. Bruce NC (2008) Alkaloids. In: Biotechnol, pp 326–361, Wiley-VCH Verlag GmbH. doi: 10.1002/9783527620906.ch7
  17. Campos Neves MT, Campos Neves A (1967) Some determinations on the leaves of Erythroxylon-Dekindtii-D from Angola Boletim da Escola de Farmacia Universidade de Coimbra Edicao Cientifica 27:67–73Google Scholar
  18. Carruthers LM, Marton LJ, Peterson CL (2007) Polyamine analogues: potent inducers of nucleosomal array oligomerization and inhibitors of yeast cell growth. Biochem J 405:541–545. doi: 10.1042/bj20061347 PubMedCrossRefGoogle Scholar
  19. Chintapakorn Y, Hamill JD (2007) Antisense-mediated reduction in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum. Phytochemistry 68(19):2465–2479. doi: 10.1016/j.phytochem.2007.05.025 PubMedCrossRefGoogle Scholar
  20. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17PubMedCrossRefGoogle Scholar
  21. D’Auria JC, Chen F, Pichersky E (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol 130(1):466–476. doi: 10.1104/pp.006460 PubMedCrossRefGoogle Scholar
  22. Descenzo RA, Minocha SC (1993) Modulation of the cellular polyamines in Tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22(1):113–127PubMedCrossRefGoogle Scholar
  23. Dewick P (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, EnglandGoogle Scholar
  24. Dräger B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21(2):211–223. doi: 10.1039/b300289f PubMedCrossRefGoogle Scholar
  25. Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development. Annu Rev Plant Physiol Plant Mol Biol 40:235–269CrossRefGoogle Scholar
  26. Flores HE, Martin-Tanguy J (1991) Polyamines and plant secondary metabolites. In: Slocum R, Flores H (eds) Biochemistry and physiology of polyamines in plant. CRC Press, Boca Raton, pp 57–96Google Scholar
  27. Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33(6):382–388CrossRefGoogle Scholar
  28. Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53(6):623–637PubMedCrossRefGoogle Scholar
  29. Hanczko R, Koros A, Toth F, Molnar-Perl I (2005) Erratum to “Behavior and characteristics of biogenic amines, ornithine and lysine derivatized with the o-phthalaldehyde-ethanethiol-fluorenylmethyl chloroformate reagent. [J Chromatogr A 1087: 210-222] J Chromatogr A 1094 (1–2):201 doi: 10.1016/j.chroma.2005.08.077
  30. Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27(6):551–560PubMedCrossRefGoogle Scholar
  31. Hao YJ, Kitashiba H, Honda C, Nada K, Moriguchi T (2005) Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. J Exp Bot 56(414):1105–1115. doi: 10.1093/jxb/eri102 PubMedCrossRefGoogle Scholar
  32. Hartmann T, Sander H, Adolph R, Toppel G (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio-vulgaris. Planta 175(1):82–90CrossRefGoogle Scholar
  33. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19. doi: 10.1186/gb-2007-8-2-r19
  34. Hoye TR, Bjorklund JA, Koltun DO, Renner MK (2000) N-methylputrescine oxidation during cocaine biosynthesis: Study of prochiral methylene hydrogen discrimination using the remote isotope method. Organic Lett 2(1):3–5CrossRefGoogle Scholar
  35. Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48(2):121–127CrossRefGoogle Scholar
  36. Hummel I, Bourdais G, Gouesbet G, Couee I, Malmberg RL, El Amrani A (2004a) Differential gene expression of arginine decarboxylase ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. New Phytol 163(3):519–531. doi: 10.1111/j.1469-8137.2004.01128.x CrossRefGoogle Scholar
  37. Hummel I, Gouesbet G, El Amrani A, Aïnouche A, Couée I (2004b) Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342(2):199–209PubMedCrossRefGoogle Scholar
  38. Jander G, Norris SR, Joshi V, Fraga M, Rugg A, Yu SX, Li LL, Last RL (2004) Application of a high-throughput HPLC-MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant J 39(3):465–475. doi: 10.1111/j.1365-313X.2004.02140.x PubMedCrossRefGoogle Scholar
  39. Johnson EL (1993) Diurnal fluctuations of cocaine and potential precursors in leaves of Erythroxylum-coca. Zeitschrift Fur Naturforschung C-a J Biosci 48(11–12):863–866Google Scholar
  40. Johnson EL, Elsohly MA (1991) Content and denovo synthesis of cocaine in embryos and endosperms from fruit of Erythroxylum-coca Lam. Ann Bot 68(5):451–453Google Scholar
  41. Johnson EL, Emche SD (1994) Variation of alkaloid content in Erythroxylum-coca leaves from leaf bud to leaf drop. Ann Bot 73(6):645–650CrossRefGoogle Scholar
  42. Kakkar RK, Sawhney VK (2002) Polyamine research in plants—a changing perspective. Physiol Plant 116(3):281–292CrossRefGoogle Scholar
  43. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228(3):367–381. doi: 10.1007/s00425-008-0772-7 PubMedCrossRefGoogle Scholar
  44. Kwak SH, Lee SH (2001) The regulation of ornithine decarboxylase gene expression by sucrose and small upstream open reading frame in tomato (Lycopersicon esculentum Mill). Plant Cell Physiol 42(3):314–323PubMedCrossRefGoogle Scholar
  45. Lee YS, Cho YD (2001a) Comparison of biochemical and immunological properties between rat and Nicotiana glutinosa ornithine decarboxylase. J Biochem Mol Biol 34(5):408–414Google Scholar
  46. Lee YS, Cho YD (2001b) Identification of essential active-site residues in ornithine decarboxylase of Nicotiana glutinosa decarboxylating both l-ornithine and l-lysine. Biochem J 360:657–665PubMedCrossRefGoogle Scholar
  47. Leete E (1980) Biosynthesis of cocaine and cuscohygrine in Erythroxylon-Coca. J Chem Soc Chem Commun (23):1170–1171Google Scholar
  48. Leete E (1982) Biosynthesis of the pyrrolidine rings of cocaine and cuscohygrine from [5-C-14]-labeled ornithine via a symmetrical intermidiate. J Am Chem Soc 104(5):1403–1408CrossRefGoogle Scholar
  49. Leete E (1985) Spermidine: an indirect precursor of the pyrrolidine rings of nicotine and nornicotine in Nicotiana glutinosa. Phytochemistry 24(5):957–960. doi: 10.1016/s0031-9422(00)83161-1 CrossRefGoogle Scholar
  50. Leete E, Marion L, Spenser ID (1954) The biogenesis of alkaloids.12. The mode of formation of tropine base of Hyoscyamine. Can J Chem Rev Canadienne De Chimie 32 (12):1116–1123Google Scholar
  51. Leete E, Bjorklund JA, Couladis MM, Kim SH (1991) Late intermediates in the biosynthesis of cocaine: 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoate and methyl ecgonine. J Am Chem Soc 113(24):9286–9292CrossRefGoogle Scholar
  52. Malmberg RL, Watson MB, Galloway GL, Yu W (1998) Molecular genetic analyses of plant polyamines. Crit Rev Plant Sci 17(2):199–224Google Scholar
  53. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34(1):135–148CrossRefGoogle Scholar
  54. McNemar MD, Gorman JA, Buckley HR (1997) Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 Delta strain of Saccharomyces cerevisiae. Yeast 13(14):1383–1389PubMedCrossRefGoogle Scholar
  55. Michael AJ, Furze JM, Rhodes MJC, Burtin D (1996) Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J 314:241–248PubMedGoogle Scholar
  56. Mizusaki S, Kisaki T, Tamaki E (1968) Phytochemical studies on tobacco alkaloids .12. Identification of Gamma-Methylaminobutyraldehyde and its precursor role in nicotine biosynthesis. Plant Physiol 43 (1):93–98Google Scholar
  57. Moore RC, Boyle SM (1990) Nucleotide-sequence and analysis of the SpeA gene encoding biosynthetic arginine decarboxylase in Escherichia-coli. J Bacteriol 172(8):4631–4640PubMedGoogle Scholar
  58. Palazon J, Navarro-Ocana A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13(8):1722–1742. doi: 10.3390/molecules13081722 PubMedCrossRefGoogle Scholar
  59. Plowman T (1982) The identification of Coca (Erythroxylum species): 1860–1910 Bot J Linn Soc 84 (4):329–353Google Scholar
  60. Plowman T, Rivier L (1983) Cocaine and Cinnamoylcocaine content of Erythroxylum species. Ann Bot 51(5):641–659Google Scholar
  61. Poulin R, Lu L, Ackermann B, Bey P, Pegg AE (1992) Mechanism of the irreversible inactivation of the mause ornithine decarboxylase by alpha-difluoromethylornithine- characterization of sequences at the inhibitor and coenzyme binding-sites. J Biol Chem 267(1):150–158PubMedGoogle Scholar
  62. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Rivier L (1981) Analysis of alkaloids in leaves of cultivated Erythroxylum and characterization of alkaline substances used during coca chewing. J Ethnopharmacol 3(2–3):313–335PubMedCrossRefGoogle Scholar
  64. Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC (1990) Factors regulating tropane-alkaloid production in a transformed root culture of a Datura–candida × D-aurea hybrid. Planta 181(3):414–422CrossRefGoogle Scholar
  65. Robins RJ, Parr AJ, Walton NJ (1991) Studies on the biosynthesis of tropane alkaloids in Datura-stramonium L Transformed root cultures. 2. On the relative contributions of l-arginine and l-ornithine to the formation of the ropane ring. Planta 183 (2):196–201Google Scholar
  66. Ruetsch YA, Boni T, Borgeat A (2001) From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Topics Med Chem 1(3):175–182CrossRefGoogle Scholar
  67. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  68. Sato F, Inai K, Hashimoto T (2007) Metabolic engineering in alkaloid biosynthesis: case studies in tyrosine-and putrescine-derived alkaloids. Appl Plant Metabol Eng, SpringerGoogle Scholar
  69. Schipper RG, Cuijpers V, de Groot L, Thio M, Verhofstad AAJ (2004) Intracellular localization of ornithine decarboxylase and its regulatory protein, antizyme-1. J Histochem Cytochem 52 (10):1259–1266. doi: 10.1369/jhc.4C6389.2004 Google Scholar
  70. Schwartz M, Altman A, Cohen Y, Arzee T (1986) Localization of ornithine decarboxylase and changes in polyamine content in root meristems of Zea mays. Physiol Plant 67(3):485–492. doi: 10.1111/j.1399-3054.1986.tb05767.x CrossRefGoogle Scholar
  71. Soltis DE, Bell C D, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann NY Acad Sci 1133:3–25. doi: 10.1196/annals.1438.005 Google Scholar
  72. Tiburcio AF, Galston AW (1986) Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25(1):107–110PubMedCrossRefGoogle Scholar
  73. Tiburcio AF, Figueras X, Claparols I, Santos M, Torne JM (1991) Improved plant-regeneration in maize callus-cultures after pretreatment with DL-alpha-difluoromethylarginine. Plant Cell Tissue Organ Cult 27(1):27–32CrossRefGoogle Scholar
  74. Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100(3):664–674CrossRefGoogle Scholar
  75. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Gen Biol 3 (7). doi: 0034.110.1186/gb-2002-3-7-research0034
  76. Wang HC, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106(10):3853–3858. doi: 10.1073/pnas.0813376106 PubMedCrossRefGoogle Scholar
  77. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Ann Rev Plant Biol 59:735–769. doi: 10.1146/annurev.arplant.59.032607.092730 CrossRefGoogle Scholar
  78. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1):22–34. doi: 10.1111/j.1365-313X.2004.02183.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Teresa Docimo
    • 1
  • Michael Reichelt
    • 1
  • Bernd Schneider
    • 2
  • Marco Kai
    • 3
  • Grit Kunert
    • 1
  • Jonathan Gershenzon
    • 1
  • John C. D’Auria
    • 1
    Email author
  1. 1.Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
  2. 2.NMR Research GroupMax Planck Institute for Chemical EcologyJenaGermany
  3. 3.Mass Spectrometry Research GroupMax Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations