Plant Molecular Biology

, Volume 78, Issue 1–2, pp 77–93 | Cite as

Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue

  • Boris Hedtke
  • Ali Alawady
  • Alfonso Albacete
  • Koichi Kobayashi
  • Michael Melzer
  • Thomas Roitsch
  • Tatsuru Masuda
  • Bernhard Grimm


Tetrapyrrole biosynthesis is controlled by multiple environmental and endogenous cues. Etiolated T-DNA insertion mutants were screened for red fluorescence as result of elevated levels of protochlorophyllide and four red fluorescent in the dark (rfd) mutants were isolated and identified. rfd3 and rfd4 belong to the group of photomorphogenic cop/det/fus mutants. rfd1 and rfd2 had genetic lesions in RIBA1 and FLU encoding the dual-functional protein GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase and a negative regulator of tetrapyrrole biosynthesis, respectively. RIBA1 catalyses the initial reaction of the metabolic pathway of riboflavin biosynthesis and rfd1 contains reduced contents of riboflavin and the flavo-coenzymes FMN and FAD. Transcriptome analysis of rfd1 revealed up-regulated genes encoding nucleus-localized factors involved in cytokinin signalling and numerous down-regulated LEA genes as well as an auxin-inducible GH3 gene. Alteration of cytokinin metabolism of rfd1was confirmed by elevated contents of active forms of cytokinin and stimulated expression of an ARR6::GUS reporter construct. An etiolated quadruple ckx (cytokinin oxidase) mutant with impaired cytokinin degradation as well as different knockout mutants for the negative AUX/IAA regulators shy2-101 (iaa3), axr2-1 (iaa7) and slr-1 (iaa14) showed also excessive protochlorophyllide accumulation. The transcript levels of CHLH and HEMA1 encoding Mg chelatase and glutamyl-tRNA reductase were increased in rfd1 and the AUX/IAA loss-of-function mutants. It is proposed that reduced riboflavin synthesis impairs the activity of the flavin-containing cytokinin oxidase, increases cytokinin contents and de-represses synthesis of 5-aminolevulinic acid of tetrapyrrole metabolism in darkness. As result of the mutant analyses, the antagonistic cytokinin and auxin signalling is required for a balanced tetrapyrrole biosynthesis in the dark.


Tetrapyrrole biosynthesis Chlorophyll ALA biosynthesis Protochlorophyllide Riboflavin biosynthesis Phytohormone Cytokinin Auxin T-DNA insertion mutagenesis 



3,4-dihydroxy-2-butanone-4-phosphate synthase


GTP cyclohydrolase II


Glutamyl-tRNA reductase


Glutamate-1-semialdehyde aminotransferase


Magnesium protoporphyrin




Protochlorophyllide oxidoreductase


Protoporphyrin IX



This work was supported by grants from the Collaborative Research Unit SFB 429 to BG. We are grateful to Thomas Altmann, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben, for providing the T-DNA-mutagenized seed collection. We are thankful to Hidehiro Fukaki, Kobe University, Kobe, Thomas Schmülling, Free University, Berlin, and Klaus Apel, Rutgers University, Ithaca, for the shy2-101 mutant, the quadruple ckx mutant and the flu mutant, respectively. We thank Markus Fischer, Institute of Food Chemistry, University Hamburg, for fruitful discussion on riboflavin biosynthesis.

Supplementary material

11103_2011_9846_MOESM1_ESM.pptx (262 kb)
Supplementary material 1 (PPTX 262 kb)


  1. Alawady A, Grimm B (2005) Tobacco Mg protoporphyrin IX Methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290PubMedCrossRefGoogle Scholar
  2. Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts E, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131PubMedCrossRefGoogle Scholar
  3. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin b2 (riboflavin). Annu Rev Nutr 20:153–167PubMedCrossRefGoogle Scholar
  4. Barnes SA, Quaggio RB, Whitelam GC, Chua NH (1996) fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J 10:1155–1161PubMedCrossRefGoogle Scholar
  5. Beck C, Grimm B (2006) Involvement of tetrapyrroles in cellular regulation. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrech, pp 223–235Google Scholar
  6. Bougri O, Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9:867–878PubMedCrossRefGoogle Scholar
  7. Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44:314–333PubMedCrossRefGoogle Scholar
  8. Cervera M (2005) Histochemical and fluorometric assays for uidA (GUS) gene detection. In: Pena L (ed) Methods in molecular biology, vol 286. Humana Press, Totowa, N.J., pp 203–213Google Scholar
  9. Cheminant S, Wild M, Bouvier F, Pelletier S, Renou JP, Erhardt M, Hayes S, Terry MJ, Genschik P, Achard P (2011) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling Deetiolation in arabidopsis. Plant Cell 23:1849–1860PubMedCrossRefGoogle Scholar
  10. Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in De-etiolation in arabidopsis (det Mutants Have an altered response to cytokinins). Plant Physiol 104:339–347PubMedGoogle Scholar
  11. Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356PubMedCrossRefGoogle Scholar
  12. Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379PubMedCrossRefGoogle Scholar
  13. D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717PubMedCrossRefGoogle Scholar
  14. Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612PubMedCrossRefGoogle Scholar
  15. Ferreira FJ, Kieber JJ (2005) Cytokinin signaling. Curr Opin Plant Bio 8:518–525CrossRefGoogle Scholar
  16. Fischer M, Romisch W, Saller S, Illarionov B, Richter G, Rohdich F, Eisenreich W, Bacher A (2004) Evolution of vitamin B2 biosynthesis: structural and functional similarity between pyrimidine deaminases of eubacterial and plant origin. J Biol Chem 279:36299–36308PubMedCrossRefGoogle Scholar
  17. Fischer M, Haase I, Feicht R, Schramek N, Köhler P, Schieberle P, Bacher A (2005) Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Biol Chem 386:417–428PubMedCrossRefGoogle Scholar
  18. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168PubMedCrossRefGoogle Scholar
  19. Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M (2009) The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS J 276:219–231PubMedCrossRefGoogle Scholar
  20. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385PubMedCrossRefGoogle Scholar
  21. Hardtke CS, Deng XW (2000) The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol 124:1548–1557PubMedCrossRefGoogle Scholar
  22. Hare PD, van Staden J (1994) Cytokinin oxidase–biochemical features and physiological significance. Physiol Plant 91:128–136CrossRefGoogle Scholar
  23. Hedtke B, Grimm B (2009) Silencing of a plant gene by transcriptional interference. Nucleic Acids Res 37:3739–3746PubMedCrossRefGoogle Scholar
  24. Hedtke B, Alawady A, Chen S, Börnke F, Grimm B (2007) Silencing of glutamyl-tRNA reductase by HEMA RNAi represses activity of Mg Chelatase and ferrochelatase in nicotiana tabacum. Plant Mol Biol 64:733–742PubMedCrossRefGoogle Scholar
  25. Herz S, Eberhardt S, Bacher A (2000) Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3, 4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53:723–731PubMedCrossRefGoogle Scholar
  26. Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826PubMedCrossRefGoogle Scholar
  27. Jordan DB, Bacot KO, Carlson TJ, Kessel M, Viitanen PV (1999) Plant riboflavin biosynthesis. Cloning, chloroplast localization, expression, purification, and partial characterization of spinach lumazine synthase. J Biol Chem 274:22114–22121PubMedCrossRefGoogle Scholar
  28. Kim BC, Soh MC, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J 9:441–456PubMedCrossRefGoogle Scholar
  29. Kuderova A, Urbankova I, Valkova M, Malbeck J, Brzobohaty B, Nemethova D, Hejatko J (2008) Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol 49:570–582PubMedCrossRefGoogle Scholar
  30. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299:902–906PubMedCrossRefGoogle Scholar
  31. Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol Genet Genomics 277:15–37CrossRefGoogle Scholar
  32. Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–574PubMedCrossRefGoogle Scholar
  33. Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149PubMedCrossRefGoogle Scholar
  34. Masuda T, Tanaka R, Shio Y, Takamiya K, Kannangara CG, Tsuji H (1994) Mechanism of benzyladenine-induced stimulation of the synthesis of 5-aminolevulinic acid in greening Cucumber cotyledons- Benzyladenine increases levels of plastids transfer RNA(Glu). Plant Cell Physiol 35:183–188Google Scholar
  35. McCormac AC, Terry MJ (2002) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559PubMedCrossRefGoogle Scholar
  36. Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413PubMedCrossRefGoogle Scholar
  37. Meskauskiene R, Nata M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831PubMedCrossRefGoogle Scholar
  38. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058PubMedCrossRefGoogle Scholar
  39. Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562PubMedCrossRefGoogle Scholar
  40. Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097PubMedCrossRefGoogle Scholar
  41. Mýtinová Z, Motyka V, Haisel D, Gaudinová A, Lubovská Z, Wilhelmová N (2010) Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biologia Plantarum 58:461–470CrossRefGoogle Scholar
  42. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574PubMedCrossRefGoogle Scholar
  43. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedCrossRefGoogle Scholar
  44. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signalling. Annu Rev Plant Biol 57:739–759PubMedCrossRefGoogle Scholar
  45. Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000a) Role of Mg-chelatase activity for the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169PubMedCrossRefGoogle Scholar
  46. Papenbrock J, Pfündel E, Mock HP, Grimm B (2000b) Decreased and increased expression of the subunit CHL I diminishes Mg-chelatase activity and rescues chlorophyll synthesis in transgenic plants. Plant J 22:155–164PubMedCrossRefGoogle Scholar
  47. Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547PubMedCrossRefGoogle Scholar
  48. Peter E, Grimm B (2009) GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol Plant 2:1198–1210PubMedCrossRefGoogle Scholar
  49. Rashotte AM, Carson SD, To JP, Kieber JJ (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132:1998–2011PubMedCrossRefGoogle Scholar
  50. Rashotte AM, Chae HS, Maxwell BB, Kieber JJ (2005) The interaction of cytokinin with other signals Physiol Plant 123:184–194Google Scholar
  51. Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081–11085PubMedCrossRefGoogle Scholar
  52. Sandoval FJ, Roje S (2005) An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem 280:38337–38345PubMedCrossRefGoogle Scholar
  53. Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids. J Biol Chem 283:30890–30900PubMedCrossRefGoogle Scholar
  54. Schmied J, Hedtke B, Grimm B (2011) Overexpression of HEMA1 encoding glutamyl-tRNA reductase. J Plant Physiol 168:1372–1379PubMedCrossRefGoogle Scholar
  55. Schmülling T, Werner T, Riefler M, Krupková E, Bartrina Y, Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252PubMedCrossRefGoogle Scholar
  56. Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658PubMedCrossRefGoogle Scholar
  57. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627PubMedCrossRefGoogle Scholar
  58. Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci USA 106:7654–7659PubMedCrossRefGoogle Scholar
  59. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD and van Wijk KJ (2009) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37 (Database issue) D969-74Google Scholar
  60. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346PubMedCrossRefGoogle Scholar
  61. Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036PubMedCrossRefGoogle Scholar
  62. Timpte C, Wilson AK, Estelle M (1994) The axr2–1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249PubMedGoogle Scholar
  63. To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671PubMedCrossRefGoogle Scholar
  64. Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050PubMedCrossRefGoogle Scholar
  65. Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2010) Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behav 5:148–150PubMedCrossRefGoogle Scholar
  66. Vavilin DV, Vermaas WF (2002) Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115:9–24PubMedCrossRefGoogle Scholar
  67. Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158PubMedCrossRefGoogle Scholar
  68. Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286PubMedCrossRefGoogle Scholar
  69. Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW (1994) Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6:629–643PubMedCrossRefGoogle Scholar
  70. Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538PubMedCrossRefGoogle Scholar
  71. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedCrossRefGoogle Scholar
  72. Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709PubMedCrossRefGoogle Scholar
  73. Yi C, Deng XW (2005) COP1—from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15:618–625PubMedCrossRefGoogle Scholar
  74. Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr Opin Plant Biol 11:16–22PubMedCrossRefGoogle Scholar
  75. Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431–21436PubMedCrossRefGoogle Scholar
  76. Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudryakova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Börner T (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148:1082–1093PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Boris Hedtke
    • 1
  • Ali Alawady
    • 1
  • Alfonso Albacete
    • 4
  • Koichi Kobayashi
    • 5
  • Michael Melzer
    • 3
  • Thomas Roitsch
    • 4
  • Tatsuru Masuda
    • 2
  • Bernhard Grimm
    • 1
  1. 1.Institute of Biology/Plant PhysiologyHumboldt University BerlinBerlinGermany
  2. 2.Graduate School of Arts and Sciences, Department of General Systems StudiesThe University of TokyoMeguro, TokyoJapan
  3. 3.Leibniz-Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
  4. 4.Institut für PflanzenwissenschaftenBereich Physiologie, Karl-Franzens-UniversitätGrazAustria
  5. 5.RIKEN Plant Science CenterTsurumi-ku, YokohamaJapan

Personalised recommendations