Plant Molecular Biology

, Volume 77, Issue 1–2, pp 159–183 | Cite as

Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73)

  • Gracia Gómez-Anduro
  • Esther Adriana Ceniceros-Ojeda
  • Luz Edith Casados-Vázquez
  • Christelle Bencivenni
  • Arturo Sierra-Beltrán
  • Bernardo Murillo-Amador
  • Axel TiessenEmail author


The hydrolysis of beta-d-glucosidic bonds which is required for the liberation of many physiologically important compounds is catalyzed by the enzyme beta-glucosidase (BGLU, EC BGLUs are implicated in several processes in plants, such as the timely response to biotic and abiotic stresses through activation of phytohormones and defense compounds. We identified 26 BGLU isozymes in the genome of the maize inbred B73 and propose a standardized nomenclature for all Zea mays BGLU paralogs (Zmbglu1-Zmbglu26). We characterized their intron–exon structure, protein features, phylogenetic relationships, and measured their expression and activity in various tissues under different environmental conditions. Sequence alignments revealed some characteristic motifs (conserved amino acids) and specific differences among different isozymes. Analysis of putative signal peptides suggested that some BGLUs are plastidic, whereas others are mitochondrial, cytosolic, vacuolar or secreted. Microarray and RT–PCR analysis showed that each member of the Zmbglu family had a characteristic expression pattern with regard to tissue specificity and response to different abiotic conditions. The source of variance for gene expression was highest for the type of organ analyzed (tissue variance) than for the growth conditions (environmental variance) or genotype (genetic variance). Analysis of promoter sequences revealed that each Zmbglu paralog possesses a distinct set of cis elements and transcription factor binding sites. Since there are no two Zmbglu paralogs that have identical molecular properties, we conclude that gene subfunctionalization in maize occurs much more rapidly than gene duplication.


Corn Carbohydrate metabolism Hydrolysis of glucosidic bonds Hormone activation Pathogen defence Abiotic stress tolerance Expression profiling 



The authors acknowledge Ana Mayela Ornelas, María-Jesús Romero, Jimena Carrillo, Rocio Crystabel López, Betsaida Bibo, Eduardo Vivas, Mario Arce and Julio Hernández for excellent technical assistance. We also thank Ruairidh Sawers for many useful comments and proofreading. This study was partially financed by SEP-CONACYT grants 2006/25996 in CIBNOR and 2007/78967 in CINVESTAV. E.A.C–O held a graduate scholarship from CONACYT. Axel Tiessen acknowledges funding from SAGARPA and CONACYT.

Supplementary material

11103_2011_9800_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1410 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Babcock GD, Esen A (1994) Substrate-specificity of maize beta-glucosidase. Plant Sci 101:31–39CrossRefGoogle Scholar
  3. Biely P, Ahlgren JA, Leathers TD, Greene RV, Cotta MA (2003) Aryl-glycosidase activities in germinating maize. Cereal Chem 80:144–147CrossRefGoogle Scholar
  4. Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root-meristem. Science 262:1051–1054PubMedCrossRefGoogle Scholar
  5. Campos N, Bako L, Feldwisch J, Schell J, Palme K (1992) A protein from maize labeled with azido-IAA has novel beta-glucosidase activity. Plant J 2:675–684CrossRefGoogle Scholar
  6. Campos N, Bako L, Brzobohaty B, Feldwisch J, Zettl R, Boland W, Palme K (1993) Identification and characterization of a novel phytohormone conjugate specific beta-glucosidase activity from maize. ACS Symp Ser 533:205–213CrossRefGoogle Scholar
  7. Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A (2000) The mechanism of substrate (aglycone) specificity in beta-glucosidases is revealed by crystal structures of mutant maize beta-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci USA 97:13555–13560PubMedCrossRefGoogle Scholar
  8. Czjzek M, Cicek M, Zamboni V, Burmeister WP, Bevan DR, Henrissat B, Esen A (2001) Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-d-thioglucoside. Biochem J 354:37–46PubMedCrossRefGoogle Scholar
  9. Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51:937–944PubMedCrossRefGoogle Scholar
  10. Ebisui K, Ishihara A, Hirai N, Iwamura H (1998) Occurrence of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and a beta-glucosidase specific for its glucoside in maize seedlings. Z Naturforsch C 53:793–798Google Scholar
  11. Esen A (1992) Purification and partial characterization of maize (Zea-Mays L.) beta-glucosidase. Plant Physiol 98:174–182PubMedCrossRefGoogle Scholar
  12. Esen A, Bandaranayake H (1998) Insertional polymorphism in introns 4 and 10 of the maize beta-glucosidase gene glu1. Genome 41:597–604PubMedGoogle Scholar
  13. Esen A, Blanchard DJ (2000) A specific beta-glucosidase-aggregating factor is responsible for the beta-glucosidase null phenotype in maize. Plant Physiol 122:563–572PubMedCrossRefGoogle Scholar
  14. Esen A, Stetler DA (1992) Immunocytochemical localization of delta-zein in the protein bodies of maize endosperm cells. Am J Bot 79:243–248Google Scholar
  15. Feldwisch J, Vente A, Zettl R, Bako L, Campos N, Palme K (1994) Characterization of 2 membrane-associated beta-glucosidases from maize (Zea mays L.) Coleoptiles. Biochem J 302:15–21PubMedGoogle Scholar
  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The protemics protocols handbook. pp, Humana Press, pp 571–607CrossRefGoogle Scholar
  17. Grace ML, Chandrasekharan MB, Hall TC, Crowe AJ (2004) Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. J Biol Chem 279:8102–8110PubMedCrossRefGoogle Scholar
  18. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359PubMedCrossRefGoogle Scholar
  19. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  20. Holding DR, Hunter BG, Chung T, Gibbon BC, Ford CF, Bharti AK, Messing J, Hamaker BR, Larkins BA (2008) Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170PubMedCrossRefGoogle Scholar
  21. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174PubMedCrossRefGoogle Scholar
  22. Kristoffersen P, Brzobohaty B, Hohfeld I, Bako L, Melkonian M, Palme K (2000) Developmental regulation of the maize Zm-g60.1 gene encoding a beta-glucosidase located to plastids. Planta 210:407–415PubMedCrossRefGoogle Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  24. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461PubMedCrossRefGoogle Scholar
  25. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120PubMedCrossRefGoogle Scholar
  26. Lehninger AL (1979) Biochimie. Flamarion Medicine Sciences, ParisGoogle Scholar
  27. Martinez-Cruz M, Zenteno E, Cordoba F (2001) Purification and characterization of a galactose-specific lectin from corn (Zea mays) coleoptyle. Biochim Biophys Acta 1568:37–44PubMedGoogle Scholar
  28. Monroe JD, Gough CM, Chandler LE, Loch CM, Ferrante JE, Wright PW (1999) Structure, properties, and tissue localization of apoplastic alpha-glucosidase in crucifers. Plant Physiol 119:385–397PubMedCrossRefGoogle Scholar
  29. Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Cairns JRK (2006) Analysis of rice glycosyl hydrolase family I and expression of Os4bglu12 beta-glucosidase. BMC Plant Biol 6:33PubMedCrossRefGoogle Scholar
  30. Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiol-SGM 155:268–278CrossRefGoogle Scholar
  31. Prestridge DS (1995) Predicting Pol-Ii promoter sequences using transcription factor-binding sites. J Mol Biol 249:923–932PubMedCrossRefGoogle Scholar
  32. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  33. Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimeric heat-shock genes in transgenic tobacco. Mol Gen Genet 231:226–232PubMedGoogle Scholar
  34. Sambrook J, Fritsch E, Manniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  35. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedCrossRefGoogle Scholar
  36. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104PubMedGoogle Scholar
  37. Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8:33PubMedCrossRefGoogle Scholar
  38. The-Arabidopsis-Genome-Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  39. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  40. Verdoucq L, Czjzek M, Moriniere J, Bevan DR, Esen A (2003) Mutational and structural analysis of aglycone specificity in maize and sorghum beta-glucosidases. J Biol Chem 278:25055–25062PubMedCrossRefGoogle Scholar
  41. Xu ZW, Escamilla-Trevino LL, Zeng LH, Lalgondar M, Bevan DR, Winkel BSJ, Mohamed A, Cheng CL, Shih MC, Poulton JE, Esen A (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367PubMedCrossRefGoogle Scholar
  42. Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287PubMedGoogle Scholar
  43. Yu HY, Kittur FS, Bevan DR, Esen A (2009a) Determination of beta-glucosidase aggregating factor (BGAF) binding and polymerization regions on the maize beta-glucosidase isozyme Glu1. Phytochemistry 70:1355–1365PubMedCrossRefGoogle Scholar
  44. Yu HY, Kittur FS, Bevan DR, Esen A (2009b) Lysine-81 and threonine-82 on maize beta-glucosidase isozyme glu1 are the key amino acids involved in beta-glucosidase aggregating factor binding. Biochemistry 48:2924–2932PubMedCrossRefGoogle Scholar
  45. Zorb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100CrossRefGoogle Scholar
  46. Zouhar J, Vevodova J, Marek J, Damborsky J, Su XD, Brzobohaty B (2001) Insights into the functional architecture of the catalytic center of a maize beta-glucosidase Zm-p60.1. Plant Physiol 127:973–985PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gracia Gómez-Anduro
    • 1
  • Esther Adriana Ceniceros-Ojeda
    • 1
    • 2
  • Luz Edith Casados-Vázquez
    • 2
  • Christelle Bencivenni
    • 3
  • Arturo Sierra-Beltrán
    • 1
  • Bernardo Murillo-Amador
    • 1
  • Axel Tiessen
    • 2
    Email author
  1. 1.Center for Biological Research of Northwest (CIBNOR)La PazMexico
  2. 2.Departamento de Ingeniería GenéticaCINVESTAV Unidad IrapuatoIrapuatoMexico
  3. 3.IRRI-CIMMYT Crop Research Informatics Laboratory (CRIL)TexcocoMexico

Personalised recommendations