Advertisement

Plant Molecular Biology

, Volume 77, Issue 1–2, pp 47–58 | Cite as

MicroRNAs as regulators of root development and architecture

  • Ghazanfar A. Khan
  • Marie Declerck
  • Céline Sorin
  • Caroline Hartmann
  • Martin CrespiEmail author
  • Christine Lelandais-Brière
Article

Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. In plants, roots play essential roles in their anchorage to the soil as well as in nutrient and water uptake. In this review, we present recent advances made in the identification of miRNAs involved in embryonic root development, radial patterning, vascular tissue differentiation and formation of lateral organs (i.e., lateral and adventitious roots and symbiotic nitrogen-fixing nodules in legumes). Certain mi/siRNAs target members of the Auxin Response Factors family involved in auxin homeostasis and signalling and participate in complex regulatory loops at several crucial stages of root development. Other miRNAs target and restrict the action of various transcription factors that control root-related processes in several species. Finally, because abiotic stresses, which include nutrient or water deficiencies, generally modulate root growth and branching, we summarise the action of certain miRNAs in response to these stresses that may be involved in the adaptation of the root system architecture to the soil environment.

Keywords

MicroRNA Root development Auxin Nodulation Abiotic stress 

Supplementary material

11103_2011_9793_MOESM1_ESM.pdf (113 kb)
Supplementary material 1 (PDF 112 kb)

References

  1. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120PubMedCrossRefGoogle Scholar
  2. Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401PubMedCrossRefGoogle Scholar
  3. Arnaud C, Bonnot C, Desnos T, Nussaume L (2010) The root cap at the forefront. C R Biol 333:335–343PubMedCrossRefGoogle Scholar
  4. Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999PubMedCrossRefGoogle Scholar
  5. Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M (1990) The LIGULELESS-1 gene acts tissue specifically in maize leaf development. Dev Biol 141:220–232PubMedCrossRefGoogle Scholar
  6. Benfey PN, Scheres B (2000) Root development. Curr Biol 10:R813–R815PubMedCrossRefGoogle Scholar
  7. Benková E, Hejátko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396PubMedCrossRefGoogle Scholar
  8. Berleth T, Jürgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118:575–587Google Scholar
  9. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887PubMedCrossRefGoogle Scholar
  10. Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 23:915–926PubMedCrossRefGoogle Scholar
  11. Brechenmacher L, Kim MY, Benitez M, Li M, Joshi T, Calla B, Lee MP, Libault M, Vodkin LO, Xu D, Lee SH, Clough SJ, Stacey G (2008) Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Mol Plant Microbe Interact 21:631–645PubMedCrossRefGoogle Scholar
  12. Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64PubMedCrossRefGoogle Scholar
  13. Byrne ME (2006) Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes. PLoS Genet 2:e89PubMedCrossRefGoogle Scholar
  14. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321PubMedCrossRefGoogle Scholar
  15. Casimiro I, Beeckman T, Graham N, Rishikesh Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting arabidopsis lateral root development. Trends Plant Sci 8:165–171PubMedCrossRefGoogle Scholar
  16. Chen H, Xiong L (2010) The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation. Plant Cell Environ 33:2180–2190PubMedCrossRefGoogle Scholar
  17. Chiou TJ (2008) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332CrossRefGoogle Scholar
  18. Chuck G, Candela H, Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12:81–86PubMedCrossRefGoogle Scholar
  19. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2–1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088PubMedCrossRefGoogle Scholar
  20. Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226PubMedCrossRefGoogle Scholar
  21. Crespi M, Frugier F (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 9:1(49):re11Google Scholar
  22. de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481PubMedCrossRefGoogle Scholar
  23. Desnos T (2008) Root branching responses to phosphate and nitrate. Current Opin Plant Biol 11:82–87CrossRefGoogle Scholar
  24. Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–308PubMedCrossRefGoogle Scholar
  25. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  26. Ding Y, Oldroyd GE (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93PubMedCrossRefGoogle Scholar
  27. Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944PubMedCrossRefGoogle Scholar
  28. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037PubMedCrossRefGoogle Scholar
  29. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043PubMedCrossRefGoogle Scholar
  30. Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137PubMedCrossRefGoogle Scholar
  31. Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 14:1847–1851PubMedCrossRefGoogle Scholar
  32. Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science 306:1046–1048PubMedCrossRefGoogle Scholar
  33. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808PubMedCrossRefGoogle Scholar
  34. Godiard L, Niebel A, Micheli F, Gouzy J, Ott T, Gamas P (2007) Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Mol Plant Microbe Interact 20:321–332PubMedCrossRefGoogle Scholar
  35. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby L, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691PubMedCrossRefGoogle Scholar
  36. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276PubMedCrossRefGoogle Scholar
  37. Gregory BD, O’Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Developmental Cell 14:854–866PubMedCrossRefGoogle Scholar
  38. Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437:1022–1026PubMedCrossRefGoogle Scholar
  39. Grigg SP, Galinha C, Kornet N, Canales C, Scheres B, Tsiantis M (2009) Repression of apical homeobox genes is required for embryonic root development in arabidopsis. Curr Biol 19:1485–1490PubMedCrossRefGoogle Scholar
  40. Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ané JM, Coon JJ (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152:19–28PubMedCrossRefGoogle Scholar
  41. Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138:226–237PubMedCrossRefGoogle Scholar
  42. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460PubMedCrossRefGoogle Scholar
  43. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386PubMedCrossRefGoogle Scholar
  44. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132PubMedCrossRefGoogle Scholar
  45. Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC (2007) Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19:3451–3461PubMedCrossRefGoogle Scholar
  46. Hamann T, Mayer U, Jürgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation andapical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395PubMedGoogle Scholar
  47. Hennig L, Taranto P, Walser M, Schönrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–2565PubMedCrossRefGoogle Scholar
  48. Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767PubMedCrossRefGoogle Scholar
  49. Hernández G, Valdés-López O, Ramírez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151:1221–1238PubMedCrossRefGoogle Scholar
  50. Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required foorphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168PubMedCrossRefGoogle Scholar
  51. Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74PubMedCrossRefGoogle Scholar
  52. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132PubMedCrossRefGoogle Scholar
  53. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544PubMedCrossRefGoogle Scholar
  54. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  55. Joshi T, Yan Z, Libault M, Jeong DH, Park S, Green PJ, Sherrier DJ, Farmer A, May G, Meyers BC, Xu D, Stacey G (2010) Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinformatics 11(1):S14Google Scholar
  56. Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004) Root-to- shoot transport of sulphate in Arabidopsis: evidence for the role of SULTR3;5 as a component of low-affinity sulphate transport system in the root vasculature. Plant Physiol 136:4198–4204PubMedCrossRefGoogle Scholar
  57. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321PubMedCrossRefGoogle Scholar
  58. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  59. Kutz A, Muller A, Henning P, Kaiser WM, Piotrowsky M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30:95–106PubMedCrossRefGoogle Scholar
  60. Laux T, Würschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:S190–S202PubMedCrossRefGoogle Scholar
  61. Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide small RNA analysis revealed differentially regulated miRNA isoforms in Medicago truncatula roots and nodules. Plant Cell 21:2780–2796PubMedCrossRefGoogle Scholar
  62. Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143Google Scholar
  63. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251PubMedCrossRefGoogle Scholar
  64. Li H, Deng Y, Wu T, Subramanian S, Yu O (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770PubMedCrossRefGoogle Scholar
  65. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057PubMedGoogle Scholar
  66. Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760PubMedCrossRefGoogle Scholar
  67. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287PubMedCrossRefGoogle Scholar
  68. Lundmark M, Kørner CJ, Nielsen TH (2010) Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays. Physiol Plant 140:57–68PubMedCrossRefGoogle Scholar
  69. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  70. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375PubMedCrossRefGoogle Scholar
  71. Maraschin FS, Memelink J, Offringa R (2009) Auxin induced, SCFTIR1-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109CrossRefGoogle Scholar
  72. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume CrespiM, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117PubMedCrossRefGoogle Scholar
  73. Martín AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de La Peña A, Leyva A, Paz-Ares J (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567PubMedCrossRefGoogle Scholar
  74. Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant. Planta 230:883–898PubMedCrossRefGoogle Scholar
  75. Meng Y, Ma X, Chen D, Wu P, Chen M (2010) MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349PubMedCrossRefGoogle Scholar
  76. Naya L, Khan GA, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C (2010) Cleavage of a non-conserved target by a specific miR156 isoform in root apexes of Medicago truncatula. Plant Signal Behav 5:328–331PubMedCrossRefGoogle Scholar
  77. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev of Plant Bio 59:519–546CrossRefGoogle Scholar
  78. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113PubMedCrossRefGoogle Scholar
  79. Overvoorde P, Fukaki H, Beeckman T. (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2(6):a001537Google Scholar
  80. Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738PubMedCrossRefGoogle Scholar
  81. Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408PubMedCrossRefGoogle Scholar
  82. Petricka JJ, Benfey PN (2008) Root layers: complex regulation of developmental patterning. Curr Opin Genet Dev 18:354–361PubMedCrossRefGoogle Scholar
  83. Prigge MJ, Wagner DR (2001) The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13:1263–1279PubMedCrossRefGoogle Scholar
  84. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112PubMedCrossRefGoogle Scholar
  85. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root-meristem initials. Development 120:2475–2487Google Scholar
  86. Simon SA, Meyers BC, Sherrier DJ (2009) MicroRNAs in the rhizobia legume symbiosis. Plant Physiol 151:1002–1008PubMedCrossRefGoogle Scholar
  87. Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359PubMedCrossRefGoogle Scholar
  88. Stone J, Liang X, Nekl E, Stiers J (2005) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41:744–754PubMedCrossRefGoogle Scholar
  89. Subramanian S, Fu Y, Sunkar R, Barbazuk BW, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160PubMedCrossRefGoogle Scholar
  90. Takahashi H (2010) Regulation of sulfate transport and assimilation in plants. Int Rev Cell Mol Biol 281:129–159PubMedCrossRefGoogle Scholar
  91. Thole JM, Vermeer JE, Zhang Y, Gadella TW, Nielsen E (2008) Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20:381–395PubMedCrossRefGoogle Scholar
  92. Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J 40:333–343PubMedCrossRefGoogle Scholar
  93. Ueda M, Koshino-Kimura Y, Okada K (2005) Stepwise understanding of root development. Curr Opin Plant Biol 8:71–76PubMedCrossRefGoogle Scholar
  94. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319PubMedCrossRefGoogle Scholar
  95. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818PubMedCrossRefGoogle Scholar
  96. Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci 107:4477–4482PubMedCrossRefGoogle Scholar
  97. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687PubMedCrossRefGoogle Scholar
  98. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216PubMedCrossRefGoogle Scholar
  99. Wang Y, Li P, Cao X, Wang X, Zhang A, Li X (2009) Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun 378:799–803PubMedCrossRefGoogle Scholar
  100. Wang J, Gao X, Li L, Shi X, Zhang J, Shi Z (2010) Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice. J Exp Bot 61:1885–1895PubMedCrossRefGoogle Scholar
  101. Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882PubMedCrossRefGoogle Scholar
  102. Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984PubMedCrossRefGoogle Scholar
  103. Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic Acid. Plant Physiol 142:1065–1074PubMedCrossRefGoogle Scholar
  104. Yang L, Liu ZQ, Lu F, Dong AW, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850PubMedCrossRefGoogle Scholar
  105. Zeng CJ, Lee YR, Liu B (2009) The WD40 repeat protein NEDD1 Functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129–1140PubMedCrossRefGoogle Scholar
  106. Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol 167:1289–1297PubMedCrossRefGoogle Scholar
  107. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29Google Scholar
  108. Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ghazanfar A. Khan
    • 1
  • Marie Declerck
    • 1
  • Céline Sorin
    • 1
    • 2
  • Caroline Hartmann
    • 1
    • 2
  • Martin Crespi
    • 1
    Email author
  • Christine Lelandais-Brière
    • 1
    • 2
  1. 1.Institut des Sciences du VégétalCentre National de la Recherche Scientifique (C.N.R.S.)Gif-sur-Yvette CedexFrance
  2. 2.Université Paris Diderot-Paris 7Paris Cedex 13France

Personalised recommendations