Advertisement

Plant Molecular Biology

, Volume 76, Issue 1–2, pp 171–185 | Cite as

DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima

  • John William Chandler
  • Bianca Jacobs
  • Melanie Cole
  • Petra Comelli
  • Wolfgang WerrEmail author
Article

Abstract

Live imaging during floral development revealed that expression of the DORNRÖSCHEN-LIKE (DRNL) gene encoding an AP2-like transcription factor, marks all organ founder cells. Transcription precedes the perception of auxin response maxima as measured by the DR5 reporter and is unaffected in early organogenesis, by mutation of four canonical auxin response elements (AuxREs) in the DRNL promoter. DRNL expression identifies discrete modes of organ initiation in the four floral whorls, from individual or pairs of organ anlagen in the outer whorl of sepals to two morphogenetic fields pre-patterning petals and lateral stamens, or a ring-shaped field giving rise to the medial stamens before carpel primordia are specified. DRNL function only overlaps in the central stem cell zone with that of its paralogue, DORNRÖSCHEN (DRN). drnl mutants are affected in floral organ outgrowth, which functionally interplays with boundary specification as organ fusions are sensitized by loss of CUP-SHAPED COTYLEDON (CUC) gene activity, and synergistic interactions exist with mutants in local auxin biosynthesis and polar transport. DRNL apparently monitors and contributes to cellular decisions in the SAM and thus provides a novel molecular access to the interplay of founder cell specification, organ anlage and organogenesis in the SAM peripheral zone.

Keywords

DORNRÖSCHEN-LIKE Morphogenetic field Floral organ Auxin DR5 CUC 

Notes

Acknowledgments

This project was funded by the Deutsche Forschungsgemeinschaft through SFB572.

Supplementary material

Supplementary material 1 (MPG 1272 kb)

Supplementary material 2 (MPG 1034 kb)

Supplementary material 3 (MPG 270 kb)

Supplementary material 4 (MPG 434 kb)

Supplementary material 5 (MPG 896 kb)

Supplementary material 6 (MPG 1156 kb)

11103_2011_9779_MOESM7_ESM.jpg (2 mb)
Supplementary material 7 (JPG 1.98 mb)

References

  1. Aida M, Tasaka M (2006) Genetic control of shoot organ boundaries. Curr Opin Plant Biol 9:72–77PubMedCrossRefGoogle Scholar
  2. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857PubMedCrossRefGoogle Scholar
  3. Aloni R, Aloni E, Langhaus M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328PubMedCrossRefGoogle Scholar
  4. Al-Shehbaz IA (1986) The genera of Lepidieae (Cruciferae; Brassicaceae) in the Southeastern United States. J Arnold Arbor Harv Univ 67:265–311Google Scholar
  5. An G, Costa MA, Ha S-B (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2:225–233PubMedCrossRefGoogle Scholar
  6. Ballas N, Wong LM, Theologis A (1993) Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J Mol Biol 233:580–596PubMedCrossRefGoogle Scholar
  7. Banno H, Mase H, Maekawa K (2006) Analysis of functional domains and binding sequences of Arabidopsis transcription factor ESR1. Plant Biotechnol 23:303–308CrossRefGoogle Scholar
  8. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  9. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  10. Benková E, Ivanchenko MG, Friml J, Shishkova S, Dubrovsky JG (2009) A morphogenetic trigger: is there an emerging concept in plant developmental biology? Trends Plant Sci 14:189–193PubMedCrossRefGoogle Scholar
  11. Bent A (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103PubMedGoogle Scholar
  12. Beveridge CA, Mathesius U, Rose RJ, Gresshof PM (2007) Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10:44–51PubMedCrossRefGoogle Scholar
  13. Bossinger G, Smyth DR (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122:1093–1102PubMedGoogle Scholar
  14. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis thaliana. Plant Cell 1:37–52PubMedCrossRefGoogle Scholar
  15. Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20PubMedGoogle Scholar
  16. Brand U, Fletcher J, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619PubMedCrossRefGoogle Scholar
  17. Breuil-Broyer S, Morel P, de Almeida-Engler J, Coustham V, Negutiu I, Trehin C (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38:182–192PubMedCrossRefGoogle Scholar
  18. Busch W, Miotk A, Ariel FD, Zhao Z, Former J, Daum G, Suzaki T, Schuster C, Schultheiss SJ, Liebfried A, Haubeiss S, Ha N, Chan RL, Lohmann JU (2010) Transcriptional control of a plant stem cell niche. Dev Cell 18:849–861PubMedCrossRefGoogle Scholar
  19. Chandler JW (2011) The role of hormones in floral organ development. J Plant Growth Reg. doi:  10.1007/s00344-010-9180-x
  20. Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134:1653–1662PubMedCrossRefGoogle Scholar
  21. Chandler JW, Cole M, Jacobs B, Comelli P, Werr W (2011) Genetic integration of DORNRÖSCHEN and DORNRÖSCHEN-LIKE reveals hierarchical interactions in auxin signalling and in patterning of the Arabidopsis apical embryo. Plant Mol Biol. doi:  10.1007/s11103-010-9721-5
  22. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799PubMedCrossRefGoogle Scholar
  23. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  24. Cole M, Chandler JW, Weijers D, Jacobs B, Comelli P, Werr W (2009) DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis thaliana embryo. Development 136:1643–1651PubMedCrossRefGoogle Scholar
  25. Crone W, Lord EM (1994) Floral initiation and development in wildtype Arabidopsis thaliana (Brassicaceae) and in the organ identity mutants apetala2–1 and agamous-1. Can J Bot 72:384–401CrossRefGoogle Scholar
  26. De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Campenhout JV, Overvoorde P, Jansen L, Vanneste S et al (2010) A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20:1697–1706PubMedCrossRefGoogle Scholar
  27. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384PubMedCrossRefGoogle Scholar
  28. Driever W, Nüsslein-Volhard C (1989) The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337:138–143PubMedCrossRefGoogle Scholar
  29. Dubrovsky JG, Sauer M, Napsucialy-Mendevil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794PubMedCrossRefGoogle Scholar
  30. Endress P (1992) Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int J Plant Sci 153:S106–S122CrossRefGoogle Scholar
  31. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefGoogle Scholar
  32. Furner IJ, Pumfrey JE (1992) Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development 115:755–764Google Scholar
  33. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedCrossRefGoogle Scholar
  34. Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034PubMedCrossRefGoogle Scholar
  35. Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013PubMedCrossRefGoogle Scholar
  36. Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655PubMedCrossRefGoogle Scholar
  37. Heisler M, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911PubMedCrossRefGoogle Scholar
  38. Hibara K-i, Karim MR, Takada S, Taoka K-i, Furutani M, Aida M, Tasaka M (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957PubMedCrossRefGoogle Scholar
  39. Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: comparison of the wild type and the homeotic pistillata mutant. Can J Bot 67:2922–2936CrossRefGoogle Scholar
  40. Ikeda Y, Banno H, Niu Q-W, Howell SH, Chua N-H (2006) The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physio 47:1443–1456CrossRefGoogle Scholar
  41. Irish V, Sussex IM (1992) A fate map of the Arabidopsis shoot meristem. Development 115:745–753Google Scholar
  42. Kubitzki, K. (2003) The families and genera of flowering plants. In: Kubitzki K (ed) Volume V, Flowering Plants, Dicotyledons, Malvales, Capparales and Non-betalain Caryophyllales. Springer, Berlin, p 428Google Scholar
  43. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900PubMedCrossRefGoogle Scholar
  44. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322PubMedCrossRefGoogle Scholar
  45. Lee J-Y, Mummenhoff K, Bowman JL (2002) Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proc Natl Acad Sci USA 99:16835–16840PubMedCrossRefGoogle Scholar
  46. Liu Z-B, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657PubMedCrossRefGoogle Scholar
  47. Löhr U, Chung H-R, Beller M, Jäckle H (2010) Bicoid—morphogen function revisited. LandesBioscience 4:236–240Google Scholar
  48. Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353PubMedCrossRefGoogle Scholar
  49. Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JH, Karaba A, de Folter S, Pereira A (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol 62:825–843PubMedCrossRefGoogle Scholar
  50. Matsumoto N, Okada K (2001) A homeobox gene, PRESSED FLOWER regulates lateral axis-dependent development of Arabidopsis flowers. Genes Devel 15:3355–3364PubMedCrossRefGoogle Scholar
  51. Matsuo N, Banno H (2008) The Arabidopsis transcription factor ESR1 induces in vitro shoot regeneration through transcriptional activation. Plant Physiol Biochem 46:1045–1050PubMedCrossRefGoogle Scholar
  52. Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. In: Last R (ed) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–28Google Scholar
  53. Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey P (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311PubMedCrossRefGoogle Scholar
  54. Müller B, Sheen J (2008) Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature 453:1094–1097PubMedCrossRefGoogle Scholar
  55. Nag A, Yang Y, Jack T (2007) DORNRÖSCHEN-LIKE, an AP2 gene, is necessary for stamen emergence in Arabidopsis. Plant Mol Biol 65:219–232PubMedCrossRefGoogle Scholar
  56. Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide Induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853PubMedCrossRefGoogle Scholar
  57. Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–3888PubMedGoogle Scholar
  58. Nomura Y, Matsuo N, Banno H (2009) A domain containing the ESR motif in ENHANCER OF SHOOT REGENERATION1 functions as a transactivation domain. Plant Biotechnol 26:395–401CrossRefGoogle Scholar
  59. Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci 100:2987–2991PubMedCrossRefGoogle Scholar
  60. Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689PubMedCrossRefGoogle Scholar
  61. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518PubMedCrossRefGoogle Scholar
  62. Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Nemmett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–259PubMedCrossRefGoogle Scholar
  63. Rieu I, Laux T (2009) Signaling pathways maintaining stem cells at the plant shoot apex. Semin Cell Dev Bio 20:1083–1088CrossRefGoogle Scholar
  64. Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Radermacher E, Schmi M, Jürgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–917PubMedCrossRefGoogle Scholar
  65. Schoof H, Lenhard M, Haeker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedCrossRefGoogle Scholar
  66. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedCrossRefGoogle Scholar
  67. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85PubMedCrossRefGoogle Scholar
  68. Tsukagoshi H, Busch W, Benfey P (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616PubMedCrossRefGoogle Scholar
  69. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286PubMedCrossRefGoogle Scholar
  70. Ward JM, Smith AM, Shah PK, Galanti SE, Yi H, Demianski AJ, van der Graaff E, Keller B, Neff MM (2006) A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE Google Scholar
  71. Yadav RK, Tavakkoli M, Reddy GV (2010) WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 137:3581–3589PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • John William Chandler
    • 1
  • Bianca Jacobs
    • 1
  • Melanie Cole
    • 1
  • Petra Comelli
    • 1
  • Wolfgang Werr
    • 1
    Email author
  1. 1.Institute of Developmental Biology, Cologne BiocenterCologne UniversityCologneGermany

Personalised recommendations