Plant Molecular Biology

, Volume 80, Issue 1, pp 55–65

MicroRNAs in the moss Physcomitrella patens

Article

Abstract

Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter’s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.

Keywords

AGO1 DCL1 Development Evolution Gametophyte MicroRNA Moss Physcomitrella patens Stress 

References

  1. Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121PubMedCrossRefGoogle Scholar
  2. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932PubMedCrossRefGoogle Scholar
  3. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefGoogle Scholar
  4. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221PubMedCrossRefGoogle Scholar
  5. Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376PubMedCrossRefGoogle Scholar
  6. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848PubMedCrossRefGoogle Scholar
  7. Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401PubMedCrossRefGoogle Scholar
  8. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673PubMedCrossRefGoogle Scholar
  9. Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349PubMedCrossRefGoogle Scholar
  10. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577PubMedCrossRefGoogle Scholar
  11. Axtell MJ, Snyder JA, Bartell DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769PubMedCrossRefGoogle Scholar
  12. Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315PubMedCrossRefGoogle Scholar
  13. Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell 7:653–662PubMedCrossRefGoogle Scholar
  14. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  15. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933PubMedCrossRefGoogle Scholar
  16. Beauclair L, Yu A, Bouché N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–462PubMedCrossRefGoogle Scholar
  17. Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656PubMedCrossRefGoogle Scholar
  18. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356PubMedCrossRefGoogle Scholar
  19. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefGoogle Scholar
  20. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  21. Chen X (2008) MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320:117–136PubMedCrossRefGoogle Scholar
  22. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44PubMedCrossRefGoogle Scholar
  23. Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358PubMedCrossRefGoogle Scholar
  24. Cove DJ, Ashton NW (1988) Growth-regulation and development in physcomitrella-patens—an insight into growth-regulation and development of bryophytes. Bot J Linn Soc 98:247–252CrossRefGoogle Scholar
  25. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71PubMedCrossRefGoogle Scholar
  26. Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975PubMedCrossRefGoogle Scholar
  27. Eamens AL, Agius C, Smith NA, Waterhouse PM, Wang MB (2010) Efficient silencing of endogenous MicroRNAs using artificial MicroRNAs in Arabidopsis thaliana. Mol Plant. doi:10.1093/mp/ssq061
  28. Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16(9):939–944PubMedCrossRefGoogle Scholar
  29. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219. doi:10.1371/journal.pone.0000219 PubMedCrossRefGoogle Scholar
  30. Fattash I, Voss B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7:13. doi:10.1186/1471-2229-7-13 PubMedCrossRefGoogle Scholar
  31. Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486PubMedCrossRefGoogle Scholar
  32. Floyd SK, Bowman JL (2007) The ancestral developmental tool kit of land plants. Int J Plant Sci 168:1–35CrossRefGoogle Scholar
  33. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037PubMedCrossRefGoogle Scholar
  34. Frank W, Decker EL, Reski R (2005a) Molecular tools to study Physcomitrella patens. Plant Biol (Stuttg) 7:220–227CrossRefGoogle Scholar
  35. Frank W, Ratnadewi D, Reski R (2005b) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394PubMedCrossRefGoogle Scholar
  36. Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Seminars cell Dev Biol 19:586–595CrossRefGoogle Scholar
  37. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500PubMedCrossRefGoogle Scholar
  38. Ha CM, Kim GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida Y, Tsukaya H, Nam HG (2003) The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 13:161–172CrossRefGoogle Scholar
  39. Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) Blade-On-Petiole-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448PubMedCrossRefGoogle Scholar
  40. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-dependent RNA Polymerase6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942PubMedCrossRefGoogle Scholar
  41. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905PubMedCrossRefGoogle Scholar
  42. Johri MM, Desai S (1973) Auxin regulation of caulonema formation in moss protonema. Nat New Biol 245:223–224PubMedGoogle Scholar
  43. Jun JH, Ha CM, Fletcher JC (2010) Blade-On-Petiole1 coordinates organ determinacy and axial polarity in arabidopsis by directly activating Asymmetric Leaves2. Plant Cell 22:62–76PubMedCrossRefGoogle Scholar
  44. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205–217PubMedCrossRefGoogle Scholar
  45. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  46. Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546PubMedCrossRefGoogle Scholar
  47. Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693PubMedCrossRefGoogle Scholar
  48. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122PubMedCrossRefGoogle Scholar
  49. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758PubMedCrossRefGoogle Scholar
  50. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212PubMedCrossRefGoogle Scholar
  51. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of Auxin Response Factor10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146PubMedCrossRefGoogle Scholar
  52. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056PubMedCrossRefGoogle Scholar
  53. Luo QJ, Samanta MP, Koksal F, Janda J, Galbraith DW, Richardson CR, Ou-Yang F, Rock CD (2009) Evidence for antisense transcription associated with microRNA target mRNAs in Arabidopsis. PLoS Genet 5:e1000457. doi:10.1371/journal.pgen.1000457 PubMedCrossRefGoogle Scholar
  54. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375PubMedCrossRefGoogle Scholar
  55. McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008) The Blade-On-Petiole genes are essential for abscission zone formation in Arabidopsis. Development 135:1537–1546PubMedCrossRefGoogle Scholar
  56. Menand B, Calder G, Dolan L (2007) Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. J Exp Bot 58:1843–1849PubMedCrossRefGoogle Scholar
  57. Merchan F, Boualem A, Crespi M, Frugier F (2009) Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol 10:R136. doi:10.1186/gb-2009-10-12-r136 PubMedCrossRefGoogle Scholar
  58. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedCrossRefGoogle Scholar
  59. Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129PubMedCrossRefGoogle Scholar
  60. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141PubMedCrossRefGoogle Scholar
  61. Niu L, Zhang Y, Pei Y, Liu C, Cao X (2008) Redundant requirement for a pair of Protein Arginine Methyltransferase4 homologs for the proper regulation of Arabidopsis flowering time. Plant Physiol 148:490–503PubMedCrossRefGoogle Scholar
  62. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87PubMedCrossRefGoogle Scholar
  63. Park W, Li J, Song R, Messing J, Chen X (2002) Carpel Factory. A Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedCrossRefGoogle Scholar
  64. Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378PubMedCrossRefGoogle Scholar
  65. Prigge MJ, Bezanilla M (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137:3535–3543PubMedCrossRefGoogle Scholar
  66. Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428PubMedCrossRefGoogle Scholar
  67. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedCrossRefGoogle Scholar
  68. Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69PubMedCrossRefGoogle Scholar
  69. Reski R (1998) Development, genetics and molecular biology of mosses. Bot Acta 111:1–15Google Scholar
  70. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedCrossRefGoogle Scholar
  71. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedCrossRefGoogle Scholar
  72. Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566PubMedCrossRefGoogle Scholar
  73. Saleh O, Issman N, Seumel GI, Stav R, Samach A, Reski R, Frank W, Arazi T (2011) MicroRNA534a control of Blade-On-Petiole 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. Plant J 65:661–674PubMedCrossRefGoogle Scholar
  74. Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R (2004) Mapping of the Physcomitrella patens proteome. Phytochemistry 65:1589–1607PubMedCrossRefGoogle Scholar
  75. Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150PubMedCrossRefGoogle Scholar
  76. Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206PubMedCrossRefGoogle Scholar
  77. Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491PubMedCrossRefGoogle Scholar
  78. Schumaker KS, Dietrich MA (1998) Hormone-induced signaling during moss development. Annu Rev Plant Physiol Plant Mol Biol 49:501–523PubMedCrossRefGoogle Scholar
  79. Singer SD, Krogan NT, Ashton NW (2007) Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Rep 26:1155–1169PubMedCrossRefGoogle Scholar
  80. Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811PubMedCrossRefGoogle Scholar
  81. Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T (2006a) Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. Plant J 47:25–37PubMedCrossRefGoogle Scholar
  82. Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006b) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511–521PubMedCrossRefGoogle Scholar
  83. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedCrossRefGoogle Scholar
  84. Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6:e1001031. doi:10.1371/journal.pgen.1001031 PubMedCrossRefGoogle Scholar
  85. Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gen Dev 18:1187–1197CrossRefGoogle Scholar
  86. Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136PubMedCrossRefGoogle Scholar
  87. Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedGoogle Scholar
  88. Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379PubMedCrossRefGoogle Scholar
  89. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216PubMedCrossRefGoogle Scholar
  90. Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3:794–806PubMedCrossRefGoogle Scholar
  91. Willenbrock H, Salomon J, Søkilde R, Barken KB, Hansen TN, Nielsen FC, Møller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15:2028–2034PubMedCrossRefGoogle Scholar
  92. Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668PubMedCrossRefGoogle Scholar
  93. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789PubMedCrossRefGoogle Scholar
  94. Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63:974–989PubMedCrossRefGoogle Scholar
  95. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935PubMedCrossRefGoogle Scholar
  96. Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Plant SciencesAgricultural Research Organization, Volcani CenterBet DaganIsrael

Personalised recommendations